Objective This study aimed to determine the steady-state errors of oral-based temperature sensors, that are embedded in mouthguards, using a robust assessment process. Materials and methods Four electronic boards with temperature sensors were encapsulated in mouthguards made from ethylene-vinyl acetate (EVA). The error and time to reach steady-state temperature were determined using a thermostatic water bath during three different conditions (34, 38.5 and 43 °C). Subsequently, a case study of one volunteer wearing the instrumented mouthguard is presented. Results The water bath tests showed that a mean absolute error of 0.2 °C was reached after a maximum of 690 s across all test conditions. The case study yielded an absolute error was 0.2 °C after 1110 s. Conclusion These results show that an instrumented mouthguard with temperature sensing capabilities can yield a consistent steady-state error that is close to the clinical requirements across a range of temperatures. However, the time it takes to reach steady-state temperature needs to be considered for these systems to correctly interpret the outcomes.
Reliable monitoring of one’s response to exercise intensity is imperative to effectively plan and manage training, but not always practical in impact sports settings. This study aimed to evaluate if an inexpensive mobile cardio-respiratory monitoring system can achieve similar performance to a metabolic cart in estimating rated perceived exertion. Eight adult men volunteered to perform treadmill tests under different conditions. Cardiorespiratory data were collected using a metabolic cart and an instrumented oral-cavity device, as well as their ratings of perceived exertion. Pearson correlation corrected for repeated measurements and stepwise regression analysis were used to observe the relationship between the cardiorespiratory features and the ratings of perceived exertion and determine the proportion of the variance of exertion that could be explained by the measurements. Minute ventilation was found to be the most associated variable to perceived exertion, closely followed by a novel metric called the audio minute volume, which can be collected by the oral-cavity device. A generalised linear model combining minute ventilation, audio minute volume, heart rate and respiration rate accounted for 64% of the variance in perceived exertion, whilst a model with only audio minute volume accounted for 56%. Our study indicates that minute ventilation is key to estimating perceived exertion during indoor running exercises. Audio minute volume was also observed to perform comparably to a lab-based metabolic cart in estimating perceived exertion. This research indicates that mobile techniques offer the potential for real-world data collection of an athlete’s physiological load and estimation of perceived exertion.
Technological advancements are enabling new applications within biomedical engineering. As a connection point between the outer environment and the human system, the oral cavity offers unique opportunities for sensing technologies. This paper systematically reviews the performance of measurement systems tested in the human oral cavity. Performance was defined by metrics related to accuracy and agreement estimation. A comprehensive search identifying human studies that reported on the accuracy or agreement of intraoral sensors found 85 research papers. Most of the literature (62%) was in dentistry, followed by neurology (21%), and physical medicine and rehabilitation (12%). The remaining papers were on internal medicine, obstetrics, and aerospace medicine. Most of the studies applied force or pressure sensors (32%), while optical and image sensors were applied most widely across fields. The main challenges for future adoption include the lack of large human trials, the maturity of emerging technologies (e.g., biochemical sensors), and the absence of standardization of evaluation in specific fields. New research should aim to employ robust performance metrics to evaluate their systems and incorporate real-world evidence as part of the evaluation process. Oral cavity sensors offer the potential for applications in healthcare and wellbeing, but for many technologies, more research is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.