As instituições públicas de ensino superior do Brasil enfrentam taxas de evasão anual preocupantes. Torna-se de extrema importância, então, o reconhecimento do perfil de alunos com maior probabilidade de evadir, levando em consideração características dos estudantes e das universidades em que eles se encontram matriculados, para que planos de medidas públicas sejam construídos de maneira a reduzir estas taxas. Nesse contexto, o presente trabalho tem como objetivo a identificação dos padrões característicos de alunos com maior tendência a abandonar o ensino público superior, assim como a identificação dos atributos mais determinantes nestes padrões. Para isso, foram aplicadas cinco técnicas de aprendizado de máquina nos dados de educação superior do INEP (Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira): Naive Bayes, K-Nearest Neighbors, Árvores de Decisão, Random Forest e Redes Neurais. Dentre elas, o melhor resultado foi obtido pela técnica Random Forest, que alcançou uma taxa de acerto de aproximadamente 80% das previsões de evasão. O modelo construído indicou que algumas das características mais determinantes na evasão de um aluno são a idade, a participação em atividades extracurriculares e a carga horária total do curso. A principal contribuição do presente trabalho vem na forma da identificação das variáveis mais importantes para a previsão de evasão. Espera-se que os resultados aqui apresentados possibilitem o desenvolvimento de estratégias de redução de evasão focadas no suporte a estudantes que se encontram nos padrões característicos identificados.
Com a expansão do mercado imobiliário na Região Serrana do estado do Rio de Janeiro, uma parcela cada vez maior da população precisa tratar com a compra e venda de imóveis. Porém, a avaliação justa de uma unidade imobiliária não é uma tarefa simples e pode ser influenciada por diferentes atributos da edificação. Com o propósito de auxiliar nessa incumbência, o presente trabalho tem como objetivo identificar as características mais importantes na avaliação de um imóvel nessa região e, em seguida, propor um modelo matemático simples capaz de estimar o seu valor de mercado. Para isso, informações sobre valores de comercialização e detalhes construtivos de casas e apartamentos à venda na cidade de Nova Friburgo foram extraídos de portais de anúncios online, formando uma base única de dados imobiliários, sobre a qual foram, posteriormente, aplicadas técnicas de seleção de variáveis e regressão linear múltipla para a obtenção do modelo pretendido. Os resultados obtidos revelaram que a característica de maior influência na determinação do preço de compra e venda de um imóvel na região é a sua área construída. Por outro lado, o modelo matemático construído foi capaz de estimar os preços de comercialização de uma propriedade com aproximadamente 25% de desvio percentual médio da base de testes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.