Experiments based on the naphthalene sublimation technique were carried out to determine the local and average transfer characteristics for flow in a corrugated wall channel. The range of the experiments encompassed the laminar, transition, and low-Reynolds-number turbulent regimes. Local mass transfer measurements were made both in the spanwise (i.e., cross stream) and streamwise directions, and overall transfer rates were also determined. The experiments demonstrated the existence of a variety of complex transfer processes and related fluid flow phenomena. These included secondary flows and associated spanwise mass transfer variations, suppression of the secondary flow by counteracting centrifugal forces, and destruction of the secondary flow by the onset of turbulence. Flow separation on the leeward facets of the corrugated wall caused a sharp decrease in the local transfer rates, but relatively high transfer rates were in evidence in the reattachment region. In the laminar range, the average transfer coefficients for the corrugated wall channel were only moderately larger than those for a parallel-plate channel. On the other hand, in the low-Reynolds-number turbulent regime, the wall corrugations were responsible for an increase of nearly a factor of three in the average coefficient compared with the smooth wall channel.
Local and average air-side transfer coefficients have been measured for a one-row corrugated fin and tube heat exchanger configuration. The measurements were accomplished via the heat-mass transfer analogy in conjunction with the naphthalene sublimation technique. The local transfer coefficients revealed the presence of several vortex systems which are activated and strengthened with increasing Reynolds number. The vortices serve to augment the transfer coefficients. The windward or leeward orientation of the facets of the corrugated wall was found to have a decisive effect on the transfer characteristics, with appreciably higher transfer rates prevailing on the windward facets. The average transfer coefficients were compared with those for a corresponding plane-walled heat exchanger configuration. The comparison showed that the augmentation due to the corrugated fin surface increased with Reynolds number. At a Reynolds number of 1000, the average coefficient for the corrugated fin system was about 45 percent greater than that for the plane fin system.
Measurements were performed to determine the local heat transfer coefficients along the heated shroud of a shrouded parallel disk system. The temperature field within the enclosure formed by the shroud and the disks was also measured. One of the disks was rotating, whereas the other disk and the shroud were stationary. Coolant air was introduced into the enclosure through an aperture at the center of the stationary disk and exited through a slot at the rim of the rotating disk. The coolant entrance-exit arrangement differed from that of previous studies, with the additional difference that the incoming coolant stream was free of rotation. The coolant flow rate, the disk rotational speed, and the aspect ratio of the enclosure were varied during the experiments. The heat transfer coefficients were found to be increasingly insensitive to the absence or presence of rotation as the coolant flow rate increased. There was a general increase of the transfer coefficients with increasing coolant flow rate, especially for low rotational speeds. The temperature field in the enclosure differed markedly depending on the relative importance of rotation and of coolant throughflow. When the latter dominates, the temperature in the core is relatively uniform, but in the presence of strong rotation there are significant nonuniformities. A comparison was made between the present Nusselt number results and those of prior experiments characterized by different coolant entrance—exit arrangements. The positioning of the coolant exit slot relative to the direction of the boundary layer flow on the shroud emerged as an important factor in the comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.