Aggregation kinetics of rotavirus in aqueous solutions and its deposition kinetics on silica surface in the presence of divalent (Ca(2+), Mg(2+)) cations were studied using complementary techniques of time-resolved dynamic light scattering (TR-DLS) and quartz crystal microbalance (QCM). Within a reasonable temporal window of 4 h, aggregation could be observed at levels as low as 10 mM of Ca(2+) and 20 mM of Mg(2+). Attachment efficiencies were always greater in Ca(2+) solutions of the same concentration, and the critical coagulation concentration (CCC) for rotavirus in Ca(2+) solutions was slightly smaller than that in Mg(2+) solutions. No aggregation was detected in Na(+) solution within the temporal window of 4 h. Deposition experiments showed higher attachment coefficients in solutions containing Ca(2+) compared to those obtained in Mg(2+) solution. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory failed to predict both the aggregation behavior of rotavirus and its deposition on silica surface. Besides electrostatic interactions, steric repulsions and specific interactions with divalent cations were important mechanisms in controlling rotavirus deposition and aggregation. Experimental results presented here suggest that rotavirus is not expected to aggregate in groundwater with typical hardness (up to 6 mM Ca(2+)) and rotavirus deposition on silica soil would be more favorable in the presence of Ca(2+) than Mg(2+).
The stability of functionalized nanoparticles generally results from both steric and electrostatic interactions. Viruses like bacteriophage MS2 have adopted similar strategies for stability against aggregation, including a net negative charge under natural water conditions and using polypeptides that form loops extending from the surface of the protein capsid for stabilization. In natural systems, dissolved organic matter can adsorb to and effectively functionalize nanoparticle surfaces, affecting the fate and transport of these nanoparticles. We used time-resolved dynamic light scattering to measure the aggregation kinetics of a model virus, bacteriophage MS2, across a range of solution chemistries to determine what factors might destabilize viruses in aquatic systems. In monovalent electrolytes (LiCl, NaCl, and KCl), aggregation of MS2 could not be induced within a reasonable kinetic time frame, and MS2 was stable even at salt concentrations greater than 1.0 M. Aggregation of MS2 could be induced in divalent electrolytes when we employed Ca(2+). This trend was also observed in solutions containing 10 mg/L Suwannee River organic matter (SROM) reference material. Even at Ca(2+) concentrations as high 200 mM, diffusion-controlled aggregation was never achieved, demonstrating an additional barrier to aggregation. These results were confirmed by small-angle X-ray scattering experiments, which indicate a transition from repulsive to attractive interactions between MS2 virus particles as monovalent salts are replaced by divalent salts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.