In this work we explore the ramifications of incoming changes brought by the energy transition, most notably the increased penetration of variable renewable energy (VRE) and phase-out of nuclear and other conventional electricity sources. The power grid will require additional flexibility capabilities to accommodate such changes, as the mismatch between generation and demand is bound to increase. Through mathematical modeling and optimization, we simulate the German power grid and investigate the requirements of on-grid large-scale storage. Different scenarios are evaluated up to 2050, when 80% of the gross electricity consumption is planned to be provided by renewable energy. Dispatchable power plants will play a key role in the transition to an energy mix with high shares of VRE. Around 120 GW of additional large-scale storage are required until 2050. Between the electrochemical technologies evaluated, lithium-ion was the best candidate. A strong reliance on dispatchables was observed, in case the commissioning of VRE plants goes slower than planned. Energy curtailment increases with VRE shares, with up to 14 TWh curtailed in high VRE scenarios in 2050.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.