Predatory dinosaurs were an important ecological component of terrestrial Mesozoic ecosystems. Though theropod dinosaurs carried this role during the Jurassic and Cretaceous Periods (and probably the post-Carnian portion of the Triassic), it is difficult to depict the Carnian scenario, due to the scarcity of fossils. Until now, knowledge on the earliest predatory dinosaurs mostly relies on herrerasaurids recorded in Carnian strata of South America. Phylogenetic investigations recovered the clade in different positions within Dinosauria, whereas fewer studies challenged its monophyly. Although herrerasaurid fossils are much better recorded in present-day Argentina than in Brazil, Argentinean strata so far yielded no fairly complete skeleton representing a single individual. Here, we describe Gnathovorax cabreirai, a new herrerasaurid based on an exquisite specimen found as part of a multitaxic association form southern Brazil. The type specimen comprises a complete and well-preserved articulated skeleton, preserved in close association (side by side) with rhynchosaur and cynodont remains. Given its superb state of preservation and completeness, the new specimen sheds light into poorly understood aspects of the herrerasaurid anatomy, including endocranial soft tissues. The specimen also reinforces the monophyletic status of the group, and provides clues on the ecomorphology of the early carnivorous dinosaurs. Indeed, an ecomorphological analysis employing dental traits indicates that herrerasaurids occupy a particular area in the morphospace of faunivorous dinosaurs, which partially overlaps the area occupied by post-Carnian theropods. This indicates that herrerasaurid dinosaurs preceded the ecological role that later would be occupied by large to medium-sized theropods.
The fossil-bearing stratigraphic sections of the Solimões Formation (southwestern Brazilian Amazonia) are exposed mainly along the Juruá, Purus, and Acre rivers, and in road cuts. These deposits have provided fossils of the four main lineages of Caviomorpha -Cavioidea, Erethizontoidea, Octodontoidea, and Chinchilloidea, contributing to the understanding on the evolution of tropical Neogene rodents. Herein, our knowledge about fossil rodents from this region is reviewed. New specimens are recorded, including taxa mentioned for this region for the first time, such as basal cavioids, Dolichotinae, Caviodon (Hydrochoeridae), and Drytomomys (Dinomyidae). Unfortunately, the deposits have no absolute ages, and based on palynological data and the biochronology of several taxa (mainly mammals), the encompassed fauna has been constrained to the late Miocene. However, some rodent lineages recorded here seem to be more related to older faunas, from the middle Miocene and Paleogene. Regarding the biogeographic and paleoenvironmental affinities, most of the Neogene rodents from the Acre region show more similarities to those from the Entre Rios, Argentina, and Urumaco, Venezuela, where wet environments were present during Neogene times. An increase in prospecting along southwestern Amazonian rivers looking for rodents (among other vertebrates) associated with methods to better constrain the ages of these faunal assemblages will contribute to a better understanding of the evolution of the tropical rodents as well as the stratigraphy and age of that portion of the basin.
Recent studies have analyzed and described the endocranial cavities of caviomorph rodents. However, no study has documented the changes in the morphology and relative size of such cavities during ontogeny. Expecting to contribute to the discussion of the endocranial spaces of extinct caviomorphs, we aimed to characterize the cranial endocast morphology and paranasal sinuses of the largest living rodent, Hydrochoerus hydrochaeris, by focusing on its ontogenetic growth patterns. We analyzed 12 specimens of different ontogenetic stages and provided a comparison with other cavioids. Our study demonstrates that the adult cranial endocast of H. hydrochaeris is characterized by olfactory bulbs with an irregular shape, showing an elongated olfactory tract without a clear circular fissure, a marked temporal region that makes the endocast with rhombus outline, and gyrencephaly. Some of these traits change as the brain grows. The cranial pneumatization is present in the frontal and lacrimal bones. We identified two recesses (frontal and lacrimal) and one sinus (frontal). These pneumatic cavities increase their volume as the cranium grows, covering the cranial region of the cranial endocast. The encephalization quotient was calculated for each specimen, demonstrating that it decreases as the individual grows, being much higher in younger specimens than in adults. Our resultsshow that the ontogenetic stage can be a confounding factor when it comes to the general patterns of encephalization of extinct rodents, reinforcing the need for paleobiologists to take the age of the specimens into account in future studies on this subject to avoid age-related biases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.