Organophosphates (OPs) constitute many toxic agrochemicals and warfare and can undergo a wide spectrum of mechanisms, some which are fairly unexplored. In this sense, concise mechanistic elucidation stands out as a strategic tool for achieving efficient detoxification and for monitoring processes. Particularly intriguing is the effect of substituting the oxygen atom of the phosphoryl moiety (P=O) in OPs with a sulfur atom to give the thio‐derived OPs (i.e., OTPs, P=S). In general, imidazole (IMZ) reacts very efficiently with OPs by targeting the phosphorus atom, although herein we evidence a thio‐driven shift with OTPs: IMZ undergoes unusual nucleophilic attack at the aliphatic carbon atom of methyl parathion. Alkylation of IMZ under mild conditions (aqueous weakly basic medium) is also novel and should be applicable to other novel IMZ‐based architectures, and thereby, it can be a great ally for organic synthesis. Overall, a broader understanding of the mechanistic trend involved in such highly toxic agents is provided.
Chemical security has been a hot topic over several years, especially involving organophosphates (OP), which are related to organophosphorus chemical warfare and pesticides. The main challenges are to develop efficient ways to destroy stockpiles of these materials and also to monitor their presence in the field or food. A promising approach in this sense is the targeted design of catalysts that can react with OP and degrade them. Herein, we present a summary of some recent advances towards OP detoxification and monitoring that involves four different approaches: (i) How? Understanding the mechanism: thorough mechanistic elucidation and design of an ideal catalytic scaffold; (ii) Nanocatalysts and sensors: rational functionalization of carbon nanomaterials leading to nanocatalysts as powder and thin films. A surface-enhanced Raman scattering (SERS) sensor for OP was also obtained combining the functionalized material with silver nanoparticles; (iii) Catalysts from waste: reuse of rice husk waste as well as waste derived from the cheap gum arabic for developing biocatalysts that have high added-value and are environmentally friendly; (iv) A simple sensor: a simple, cheap and compact homemade colorimeter that can be used as a colorimetric sensor for detecting quantitatively various compounds, including pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.