This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves (J-Δa curves). Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds utilized side-grooved, clamped SE(T) specimens and 3P bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using a single specimen technique. The shallow-crack SE(B) specimen provides an R-curve which, albeit slightly more conservative, exhibits levels of J-values which are relatively comparable to the levels of J corresponding to the deeply-cracked SE(T) specimen at a fixed amount of crack growth, Δa. This experimental characterization provides additional toughness data which serve to evaluate crack growth resistance properties of pipeline girth welds using SE(T) and SE(B) specimens with weld centerline cracks.
Structural integrity assessments of pipe girth welds play a key role in design and safe operation of piping systems, including deep water steel catenary risers. Current methodologies for structural integrity assessments advocate the use of geometry dependent resistance curves so that crack-tip constraint in the test specimen closely matches the crack-tip constraint for the structural component. Testing standards now under development to measure fracture resistance of pipeline steels (J and CTOD) most often employ single edge notched specimens under tension (SENT) to match a postulated defect in the structural component. This paper presents an investigation of the ductile tearing properties for a girth weld of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves (J-R curves). Testing of the girth weld pipeline steels employed clamped SE(T) specimen with center-crack weld and three-point bending SE(B) (or SENB) specimens to determine the J-R curves. Tests involving SE(B) specimens are usually considered conservative, however, the comparison between this two methods may point an accurate alternative for girth weld assessments, since adequate geometry is adopted to describe accurately the structure’s behavior.
Accurate measurements of fracture resistance properties, including crack growth resistance curves for pipeline girth welds, become essential in defect assessment procedures of the weldment region and the heat affected zone, where undetected cracklike defects (such as lack of penetration, deep undercuts, root cracks, etc.) may further extend due to to high tension stresses and strains. This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves ((J-Δa curves). Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds utilized side-grooved, clamped single edge notched tensiles (SE (T)) specimens and three-point (3P) bend single edge bend (SE(B)) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using a single specimen technique. Recently developed compliance functions and η-factors applicable for SE (T) and SE(B) fracture specimens with homogeneous material and overmatch welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records. This experimental characterization provides additional toughness data which serve to evaluate crack growth resistance properties of pipeline girth welds using SE (T) and SE(B) specimens with weld centerline cracks.
Ao orientador Prof. Dr. Claudio Ruggieri pela grande oportunidade concedida, pela motivação, incentivo e pelos ensinamentos ao longo dessa empreitada; À minha esposa Andressa, pela compreensão, amor, paciência e pelo voto de confiança; Aos meus pais, por tudo; À Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP), à Financiadora de Estudos e Projetos-FINEP e ao Ministério da Ciência e Tecnologia-MCT, pelo apoio financeiro concedido por meio do Programa de Recursos Humanos da ANP para o Setor Petróleo e Gás-PRH-ANP/MCT, e aos coordenadores e PV do PRH-19 pela imensa ajuda na viabilização das verbas junto aos órgãos competentes;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.