Heavy sterile neutrinos with masses O(100) MeV mixing with active neutrinos can be produced in the core of a collapsing supernova (SN). In order to avoid an excessive energy loss, shortening the observed duration of the SN 1987A neutrino burst, we show that the active-sterile neutrino mixing angle should satisfy sin 2 θ 5 × 10 −7 . For a mixing with tau flavour, this bound is much stronger than the ones from laboratory searches. Moreover, we show that in the viable parameter space the decay of such "heavy" sterile neutrinos in the SN envelope would lead to a very energetic flux of daughter active neutrinos; if not too far below current limits, this would be detectable in large underground neutrino observatories, like Super-Kamiokande, as a (slightly time-delayed) high-energy bump in the spectrum of a forthcoming Galactic SN event.
In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of? that, even after 40 years from the Vera Rubin seminal discovery [1] does not have a proper answer. Actually, the more we have investigated, the more this issue has become strongly entangled with aspects that go beyond the established Quantum Physics, the Standard Model of Elementary particles and the General Relativity and related to processes like the Inflation, the accelerated expansion of the Universe and High Energy Phenomena around compact objects. Even Quantum Gravity and very exotic Dark Matter particle candidates may play a role in framing the Dark Matter mystery that seems to be accomplice of new unknown Physics. Observations and experiments have clearly indicated that the above phenomenon cannot be considered as already theoretically framed, as hoped for decades. The Special Topic to which this review belongs wants to penetrate this newly realized mystery from different angles, including that of a contamination of different fields of Physics apparently unrelated. We show with the works of this ST that this contamination is able to guide us into the required new Physics. This review wants to provide a good number of these “paths or contamination” beyond/among the three worlds above; in most of the cases, the results presented here open a direct link with the multi-scale dark matter phenomenon, enlightening some of its important aspects. Also in the remaining cases, possible interesting contacts emerges. Finally, a very complete and accurate bibliography is provided to help the reader in navigating all these issues.
Motivated by recent work on the Modified Maxwell (ModMax) black holes [Phys Lett B 10.1016/j.physletb.2020.136011], which are invariant in duality rotations and conformal transformations founded in [Phys Rev D 10.1103/PhysRevD.102.121703], we probe its effects on the shadow cast, weak field gravitational lensing, and neutrino propagation in its vicinity. Using the EHT data for the shadow diameter of Sgr. A* and M87*, and LIGO/VIRGO experiments for the dyonic ModMax black hole perturbations, we find constraints for ModMax parameters such as $$Q_\text {m}$$ Q m and the screening factor $$\gamma $$ γ . We also analyze how the shadow radius behaves as perceived by a static observer and one that is comoving with the cosmic expansion. The effect of the ModMax parameters is constant for a static observer, and we found That it varies when the observer is comoving with cosmic expansion. We also analyzed its effect on the weak deflection angle by exploiting the Gauss–Bonnet theorem and its application to Einstein ring formation. We also consider the finite distance effect and massive particle deflection. Our results indicate that the far approximation of massive particle gives the largest deflection angle and amplifies the effect of $$Q_\text {m}$$ Q m and $$\gamma $$ γ . Then we also calculate the quasinormal modes and greybody bounds which encode unique characteristic features of the dyonic ModMax black hole. With the advent of improving space technology, we reported that it is possible to detect the deviation caused through the shadow cast, Einstein rings, quasinormal modes, and neutrino oscillations.
We study the neutrino pair annihilation into electron–positron pairs ( ) near the surface of a neutron star. The analysis is performed in the framework of extended theories of gravity. The latter induce a modification of the minimum photon sphere radius (R ph) and the maximum energy deposition rate near R ph, as compared to those of general relativity. These results might lead to an efficient mechanism for generating GRBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.