Many analytical methods for polyphenol determination in food and beverages can be found in the literature, but most of them need time-consuming sample pretreatment. Conversely, methods are missing for a rapid screening of non-pre-treated samples, with useful application in the agri-food industry, from process control to fraud. Selected ion recording mass mode after liquid chromatographic separation was used for the detection and quantification of free polyphenols in three craft beers, after just degassing, filtering, and diluting the beer samples with the mobile phase prior to the analysis. Fourteen polyphenols including hydroxybenzoic acids, hydroxycinnamic acids, and flavonols were chosen as standards. Nine of them were identified and quantified in at least one of the analyzed craft beers, despite the low content and the complexity of the samples. Depending on the analyte, 80− 7 μg/L as the limit of detection (LOD) and 240−30 μg/L as the limit of quantification (LOQ) were found. Satisfactory results for interday and intraday precisions, accuracy, recovery, and matrix effect were found. The one-factor analysis of variance (ANOVA) on the three different craft beers was statistically significant, with P < 0.05. The electrospray ionization mass fingerprinting of the same non-pre-treated craft beers was also investigated for wider characterization. Diagnostic ions were found and identified as deriving from oligosaccharides, organic acids, and amino acids.
Ionic liquids (ILs) are considered in the majority of cases green solvents, due to their virtually null vapor pressure and to the easiness in recycling them. In particular, imidazolium ILs are widely used in many fields of Chemistry, as solvents or precursors of N-heterocyclic carbenes (NHCs). The latter are easily obtained by deprotonation of the C2-H, usually using strong bases or cathodic reduction. Nevertheless, it is known that weaker bases (e.g., triethylamine) are able to promote C2-H/D exchange. From this perspective, the possibility of deprotonating C2-H group of an imidazolium cation by means of a basic counter-ion was seriously considered and led to the synthesis of imidazolium ILs spontaneously containing NHCs. The most famous of this class of ILs are N,N'-disubstituted imidazolium acetates. Due to the particular reactivity of this kind of ILs, they were appointed as “organocatalytic ionic liquids” or “proto-carbenes.” Many papers report the use of these imidazolium acetates in organocatalytic reactions (i. e., catalyzed by NHC) or in stoichiometric NHC reactions (e.g., with elemental sulfur to yield the corresponding imidazole-2-thiones). Nevertheless, the actual presence of NHC in N,N'-disubstituted imidazolium acetate is still controversial. Moreover, theoretical studies seem to rule out the presence of NHC in such a polar environment as an IL. Aim of this Mini Review is to give the reader an up-to-date overview on the actual or potential presence of NHC in such an “organocatalytic ionic liquid,” both from the experimental and theoretical point of view, without the intent to be exhaustive on N,N'-disubstituted imidazolium acetate applications.
The electrochemical oxidation of theophylline was investigated by controlled potential electrolysis in two different organic solvents and in water for comparison. The anodic oxidation was monitored by cyclic voltammetry in situ and UV‐Vis spectrophotometry ex situ and the final electrolyzed solutions were analyzed by tandem mass spectrometry after chromatographic separation with an HPLC‐PDA‐ESI‐MS/MS system. The main oxidation products evidenced as the main diode array chromatographic peaks were tentatively assigned to dimeric forms of theophylline, two of which have never been reported before, on the base of retention time, UV‐Vis spectrum, m/z ratio in both positive and negative ESI modes and fragmentation pattern. Two chemical paths following the primary mono‐electronic anodic oxidation of theophylline to the final evidenced oxidation products have been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.