Abstract. Lean is a new open source theorem prover being developed at Microsoft Research and Carnegie Mellon University, with a small trusted kernel based on dependent type theory. It aims to bridge the gap between interactive and automated theorem proving, by situating automated tools and methods in a framework that supports user interaction and the construction of fully specified axiomatic proofs. Lean is an ongoing and long-term effort, but it already provides many useful components, integrated development environments, and a rich API which can be used to embed it into other systems. It is currently being used to formalize category theory, homotopy type theory, and abstract algebra. We describe the project goals, system architecture, and main features, and we discuss applications and continuing work.
We explore the combination of bounded model checking and induction for proving safety properties of infinite-state systems. In particular, we define a general k-induction scheme and prove completeness thereof. A main characteristic of our methodology is that strengthened invariants are generated from failed k-induction proofs. This strengthening step requires quantifier-elimination, and we propose a lazy quantifierelimination procedure, which delays expensive computations of disjunctive normal forms when possible. The effectiveness of induction based on bounded model checking and invariant strengthening is demonstrated using infinite-state systems ranging from communication protocols to timed automata and (linear) hybrid automata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.