Ticks are blood-feeding arthropods and can harbor several bacteria, including the worldwide zoonotic disease Q-fever agent Coxiella burnetii. Recent studies have reported a distinct group of Coxiella mostly associated with Ixodidae ticks, including the primary endosymbionts of Amblyomma americanum. In the present work, a screening for Coxiella infection was performed by 16S ribosomal DNA (rDNA) gene analyses in 293 tick samples of 15 different species sampled worldwide, including Brazil, Colombia, Kenya, and China. Different Coxiella phylotypes were identified, and these putative symbiotic bacteria were detected in ten different Amblyomma tick species. Approximately 61 % of Rhipicephalus sanguineus and ∼37 % of Rhipicephalus microplus DNA samples were positive for Coxiella. Sequence analysis and phylogenetic reconstruction grouped all the detected Coxiella with Coxiella-like symbionts from different Ixodidae ticks. This well-defined clade clearly excludes known phylotypes of C. burnetii pathogens and other Coxiella spp. detected in different environmental samples and other invertebrate hosts.
Rickettsioses are re-emerging vector-borne zoonoses with a global distribution. Recently, Rickettsia sp. strain Atlantic rainforest has been associated with new human spotted-fever (SF) cases in Brazil, featuring particular clinical signs: eschar formation and lymphadenopathy. These cases have been associated with the tick species, Amblyomma ovale From 2010 until 2015, the Brazilian Health Department confirmed 11 human SF cases in the Maciço de Baturité region, Ceará, Brazil. The present study reports the circulation of Rickettsia spp. in vectors from this entirely new endemic area for SF. A total of 1,727 ectoparasites were collected in this area from the environment, humans, and wild and domestic animals. Samples (n = 887) were screened by polymerase chain reaction (PCR), targeting the gltA and ompA rickettsial genes. Sequencing and phylogenetic analyses of gltA gene amplicons were carried out for 13 samples positive for both screening PCRs. Fragments of gltA and ompA from three samples were cloned, sequenced, and analyzed further. A. ovale and Rhipicephalus sanguineus specimens, collected from dogs, were found to be infected with Rickettsia sp. str. Atlantic rainforest, suggesting the importance of dogs in the epidemic cycle. Candidatus Rickettsia andeanae, Rickettsia felis, and Rickettsia bellii were also found infecting ticks and fleas in five municipalities, demonstrating the broad diversity of rickettsiae in circulation in the studied area. This study reports, for the first time, evidence of infection with Rickettsia sp. strain Atlantic rainforest in A. ovale and R. sanguineus in Ceará, and Ca. R. andeanae in an Atlantic rainforest environment of Brazil.
Amblyomma nodosum ticks were collected from one collared anteater ( Tamandua tetradactyla) in the Caatinga biome, Brazil. From one sample, we isolated a Rickettsia sp. that was phylogenetically close to Rickettsia sp. strain NOD, with 99.9, 100.0, and 99.8% identity for gltA, htrA, and ompA genes, respectively.
Ixodes ricinus is an important vector of several human and veterinary infectious agents. Its wide geographical distribution and permissive feeding behaviour have prompted earlier studies on its population genetics. Results were, nevertheless, not conclusive. Furthermore, no research has fully focused on the south-western distribution range of I. ricinus, where exchanges between European and North African populations are more likely to occur. The presence of an additional species, Ixodes inopinatus, in the area further confuses the topic, as the two species are hard to differentiate morphologically. The present work describes the testing of microsatellite markers previously described for I. ricinus using Portuguese and Tunisian tick populations of both species. In addition, new microsatellite loci were developed to complement the available marker toolbox. Loci showed different amplification successes across subpopulations, with Tunisian DNA less readily amplified. Altogether, 15 loci were considered suitable for genetic analyses of Portuguese subpopulations, 10 for Tunisian samples, and seven, common to both populations, were considered to be informative at the inter-continental level. A preliminary analysis of both datasets revealed two isolated populations, which can correspond to two different species. Furthermore, Tunisian specimens identified by sequencing of 16S rDNA as having I. ricinus or I. inopinatus sequence profiles all clustered together in one single population using the proposed microsatellites. This confirms that taxonomic decisions based only on 16S rRNA gene sequencing can be misleading. The application of the proposed set of microsatellite markers to a larger sample, representative of the south-western Ixodes’ distribution range, will be crucial to clarify the distribution of both species.
Neoehrlichia mikurensis is a new emerging tick-borne Gram-negative bacterium, belonging to the family Anaplasmataceae, the main vector of which in Europe is the tick Ixodes ricinus. N. mikurensis is responsible for neoehrlichiosis, occurring mostly in patients with underlying diseases. In the present study, a total of 348 I. ricinus and Dermacentor reticulatus ticks collected in north-eastern Poland were analyzed for the prevalence of N. mikurensis. A total of 140 questing ticks (124 of I. ricinus ticks and 16 D. reticulatus) collected with the flagging method and 208 ticks (105 and 103 I. ricinus and D. reticulatus, respectively) removed from dogs were selected for the study. cDNA (questing ticks) and total DNA (questing and feeding ticks) were analyzed by qPCR targeting the 16S rRNA gene of N. mikurensis. Positive samples were further analyzed by nested PCR and sequencing. The prevalence differed between ticks collected from vegetation (19.3%; 27/140) and ticks removed from dogs (6.7%; 14/208). The presence of the pathogen in questing and feeding D. reticulatus ticks was proven in Poland for the first time. In summary, our research showed that infections of ticks of both the most common tick species I. ricinus and D. reticulatus in north-eastern Poland are present and ticks collected from urban areas were more often infected than ticks from suburban and natural areas. The detection of N. mikurensis in I. ricinus and D. reticulatus ticks from north-eastern Poland indicates potential transmission risk for tick-bitten humans at this latitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.