In this paper, we propose a technique for time series clustering using community detection in complex networks. Firstly, we present a method to transform a set of time series into a network using different distance functions, where each time series is represented by a vertex and the most similar ones are connected. Then, we apply community detection algorithms to identify groups of strongly connected vertices (called a community) and, consequently, identify time series clusters. Still in this paper, we make a comprehensive analysis on the influence of various combinations of time series distance functions, network generation methods and community detection techniques on clustering results. Experimental study shows that the proposed network-based approach achieves better results than various classic or up-to-date clustering techniques under consideration. Statistical tests confirm that the proposed method outperforms some classic clustering algorithms, such as k-medoids, diana, median-linkage and centroid-linkage in various data sets. Interestingly, the proposed method can effectively detect shape patterns presented in time series due to the topological structure of the underlying network constructed in the clustering process. At the same time, other techniques fail to identify such patterns. Moreover, the proposed method is robust enough to group time series presenting similar pattern but with time shifts and/or amplitude variations. In summary, the main point of the proposed method is the transformation of time series from time-space domain to topological domain. Therefore, we hope that our approach contributes not only for time series clustering, but also for general time series analysis tasks.
Network theory has established itself as an appropriate tool for complex systems analysis and pattern recognition. In the context of spatiotemporal data analysis, correlation networks are used in the vast majority of works. However, the Pearson correlation coefficient captures only linear relationships and does not correctly capture recurrent events. This missed information is essential for temporal pattern recognition. In this work, we propose a chronological network construction process that is capable of capturing various events. Similar to the previous methods, we divide the area of study into grid cells and represent them by nodes. In our approach, links are established if two consecutive events occur in two different nodes. Our method is computationally efficient, adaptable to different time windows and can be applied to any spatiotemporal data set. As a proof-of-concept, we evaluated the proposed approach by constructing chronological networks from the MODIS dataset for fire events in the Amazon basin. We explore two data analytic approaches: one static and another temporal. The results show some activity patterns on the fire events and a displacement phenomenon over the year. The validity of the analyses in this application indicates that our data modeling approach is very promising for spatio-temporal data mining.
The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.