Computer Science students are usually enthusiastic about learning Artificial Intelligence (AI) due to the possibility of developing computer games that incorporate AI behaviors. Under this scenario, Search Algorithms (SA) are a fundamental subject of AI for a broad variety of games. Implementing deterministic games, varying from tic-tac-toe to chess games, are commonly approaches used to teach AI. Considering the perspective of game playing, however, stochastic games are usually more fun to play, and are not much explored during AI learning process. Other approaches in AI learning include developing searching algorithms to compete against each other. These approaches are relevant and engaging, but they lack an environment that features both algorithm design and benchmarking capabilities. To address this issue, we present Amê -an environment to support the learning process and analysis of adversarial search algorithms using a stochastic card game. We have conducted a pilot experiment with Computer Science students that developed different adversarial search algorithms for Hanafuda (a traditional Japanese card game).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.