The plant population dynamic is affected by ecological and evolutionary processes that operate at all stages of the plant life cycle. The aim of this study was to characterize the seed and seedling performance of Copaifera langsdorffii by testing four hypotheses: the resource concentration hypothesis; the relationship between seed size and germinability hypothesis; the relationship between seed size and seedling vigor hypothesis; and the intraspecific seedling competition hypothesis. All seeds used in the experiments were collected from 35 C. langsdorffii plants located in a fragment of the Brazilian cerrado (savanna). The number of fruits per plant negatively affected Rhinochenus brevicollis attacks on C. langsdorffii seeds. Therefore, this result does not support the resource concentration hypothesis, and predator satiation was used in order to explain the observed result. In general, seed germinability (percentage and time to emergence) was not influenced by seed size. The homogeneity of the experimental design, together with an abundant water supply, may have masked the effects of seed size on germinability. Seed size positively affected seedling development, corroborating the expected relationship between seed size and seedling vigor. The number of se edling per plastic bags negatively affected the growth of C. langsdorffii. The nutrient-limited soil probably promoted the below-ground competition for nutrients among seedlings. Finally, the role of evolutionary and ecological factors on C. langsdorffii population dynamics is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.