Synchronous activity of cortical inhibitory interneurons expressing parvalbumin (PV) underlies the expression of cortical gamma rhythms. Paradoxically, deficient PV inhibition is associated with increased broadband gamma power. Increased baseline broadband gamma is also a prominent characteristic in schizophrenia, and a hallmark of network alterations induced by N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine. It has been questioned if enhanced broadband gamma power is a true rhythm, and if rhythmic PV inhibition is involved or not. It has been suggested that asynchronous and increased firing activities underlie broadband power increases spanning the gamma band. Using mice lacking NMDAR activity specifically in PV neurons to model deficient PV inhibition, we here show that local LFP (local field potential) oscillations and neuronal activity with decreased synchronicity generate increases in prefrontal broadband gamma power. Specifically, reduced spike time precision of both local PV interneurons and wide-spiking (WS) excitatory neurons contribute to increased firing rates, and spectral leakage of spiking activity (spike "contamination") affecting the broadband gamma band. Desynchronization was evident at multiple time scales, with reduced spike-LFP entrainment, reduced cross-frequency coupling, and fragmentation of brain states. While local application of S(+)-ketamine in wildtype mice triggered network desynchronization and increases in broadband gamma power, our investigations suggest that disparate mechanisms underlie increased power of broadband gamma caused by genetic alteration of PV interneurons, and ketamine-induced power increases in broadband gamma. Our studies, thus, confirm that broadband gamma increases can arise from asynchronous activities, and demonstrate that long-term deficiency of PV inhibition can be a contributor..
Synchronous activity of cortical inhibitory interneurons expressing parvalbumin (PV) underlies the expression of cortical gamma rhythms. Paradoxically, deficient PV inhibition is associated with increased broadband gamma power. Increased baseline broadband gamma is also a prominent characteristic in schizophrenia, and a hallmark of network alterations induced by N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine. It has been questioned if enhanced broadband gamma power is a true rhythm, and if rhythmic PV inhibition is involved or not. It has been suggested that asynchronous and increased firing activities underlie broadband power increases spanning the gamma band. Using mice lacking NMDAR activity specifically in PV neurons to model deficient PV inhibition, we here show that local LFP (local field potential) oscillations and neuronal activity with decreased synchronicity generate increases in prefrontal broadband gamma power. Specifically, reduced spike time precision of both local PV interneurons and wide-spiking (WS) excitatory neurons contribute to increased firing rates, and spectral leakage of spiking activity (spike “contamination”) affecting the broadband gamma band. Desynchronization was evident at multiple time scales, with reduced spike-LFP entrainment, reduced cross-frequency coupling, and fragmentation of brain states. While local application of S(+)-ketamine in wildtype mice triggered network desynchronization and increases in broadband gamma power, our investigations suggest that disparate mechanisms underlie increased power of broadband gamma caused by genetic alteration of PV interneurons, and ketamine-induced power increases in broadband gamma. Our studies, thus, confirm that broadband gamma increases can arise from asynchronous activities, and demonstrate that long-term deficiency of PV inhibition can be a contributor.
Inhibitory interneurons expressing parvalbumin (PV) in the prefrontal cortex (PFC) are central to excitatory/inhibitory (E/I) balance, generation of gamma oscillations, and cognition. Dysfunction of PV interneurons disrupts information processing and cognitive behavior. Tyrosine receptor kinase B (trkB) signaling is known to regulate the differentiation and maturation of cortical PV interneurons during development, but is also suggested to be involved in the activity and network functions of PV interneurons in the adult brain. Using a novel viral strategy for cell-type and region-specific expression of a dominant negative trkB in adult mice, we show that reduced trkB signaling in PV interneurons in the PFC leads to pronounced morphological, physiological, and behavioral changes. Our results provide evidence for a critical role of trkB signaling in the function of PV interneurons in the adult brain, local network activities central to prefrontal circuit dynamics, and cognitive behavior..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.