A compact grating-stabilized diode laser system for atomic physics Ricci, L.; Weidemuller, M.; Esslinger, T.; Zimmermann, C.; Hansch, T.
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Received 2 1 December 1994
AbstractWe describe a compact, economic and versatile diode laser system based on commercial laser diodes, optically stabilized by means of feedback from a diffraction grating. We offer detailed information which should enable the reader to copy our set-up which uses only easily machined mechanical parts. Our system offers single-mode operation with a linewidth of a few 100 kHz, continuous scans over 25 GHz, high chirp rates (up to 9 GHz/ms) and FM-modulation up to the GHz range. We discuss radiofrequency phase-locking of two independent lasers systems, allowing well controlled fast frequency switching which overcomes the limitations imposed by acousto-optic modulators.
Alpha-synuclein is a natively unfolded protein widely expressed in neurons at the presynaptic level. It is linked to Parkinson's disease by two lines of evidence: amyloid fibrils of the protein accumulate in patients' brains and three genetic mutants cause autosomal dominant forms of the disease. The biological role of the protein and the mechanisms involved in the etiopathogenesis of Parkinson's disease are still unknown. Membrane binding causes the formation of an amphipathic alpha-helix, which lies on the surface without crossing the bilayer. Recent observations however reported that the application of a voltage induces a pore-like activity of alpha-synuclein. This study aims to characterize the pore forming activity of the protein starting from its monomeric form. In particular, experiments with planar lipid membranes allowed recording of conductance activity bursts with a defined and reproducible fingerprint. Additional experiments with deletion mutants and covalently bound alpha-synuclein dimers were performed to understand both pore assembly and stoichiometry. The information acquired allowed formulation of a model for pore formation at different conductance levels.
Despite the widespread use of up-down staircases in adaptive threshold estimation, their efficiency and usability in forced-choice experiments has been recently debated. In this study, simulation techniques were used to determine the small-sample convergence properties of stochastic approximation (SA) staircases as a function of several experimental parameters. We found that satisfying some general requirements (use of the accelerated SA algorithm, clear suprathreshold initial stimulus intensity, large initial step size) the convergence was accurate independently of the spread of the underlying psychometric function. SA staircases were also reliable for targeting percent-correct levels far from the midpoint of the psychometric function and performed better than classical up-down staircases with fixed step size. These results prompt the utilization of SA staircases in practical forced-choice estimation of sensory thresholds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.