In addition to being key elements in hemostasis and thrombosis, platelets amplify neutrophil function. We aimed to gain further insight into the stimuli, mediators, molecular pathways, and regulation of neutrophil extracellular trap formation mediated by human platelets. Platelets stimulated by lipopolysaccharide, a wall component of gram-negative bacteria, Pam3-cysteine-serine-lysine 4, a mimetic of lipopeptide from gram-positive bacteria, Escherichia coli, Staphylococcus aureus, or physiologic platelet agonists promoting neutrophil extracellular trap formation and myeloperoxidase-associated DNA activity under static and flow conditions. Although P-selectin or glycoprotein IIb/IIIa were not involved, platelet glycoprotein Ib, neutrophil cluster of differentiation 18, and the release of von Willebrand factor and platelet factor 4 seemed to be critical for the formation of neutrophil extracellular traps. The secretion of these molecules depended on thromboxane A(2) production triggered by lipopolysaccharide or Pam3-cysteine-serine-lysine 4 but not on high concentrations of thrombin. Accordingly, aspirin selectively inhibited platelet-mediated neutrophil extracellular trap generation. Signaling through extracellular signal-regulated kinase, phosphatidylinositol 3-kinase, and Src kinases, but not p38 or reduced nicotinamide adenine dinucleotide phosphate oxidase, was involved in platelet-triggered neutrophil extracellular trap release. Platelet-mediated neutrophil extracellular trap formation was inhibited by prostacyclin. Our results support a role for stimulated platelets in promoting neutrophil extracellular trap formation, reveal that an endothelium-derived molecule contributes to limiting neutrophil extracellular trap formation, and highlight platelet inhibition as a potential target for controlling neutrophil extracellular trap cell death.
The formation of neutrophil extracellular traps (NETs) is a newly described phenomenon that increases the bacteria-killing ability and the inflammatory response of neutrophils. Because NET generation occurs in an inflammatory microenvironment, we examined its regulation by anti-inflammatory drugs. Treatment of neutrophils with dexamethasone had no effect, but acetylsalicylic acid (ASA) treatment prevented NET formation. NETosis was also abrogated by the presence of BAY 11-7082 [(E)-3-[4-methylphenylsulfonyl]-2-propenenitrile] and Ro 106-9920 [6-(phenylsulfinyl)tetrazolo [1,5-b]pyridazine], two structurally unrelated nuclear factor-kB (NF-kB) inhibitors. The decrease in NET formation mediated by ASA, BAY-11-7082, and Ro 106-9920 was correlated with a significant reduction in the phosphorylation of NF-kB p65 subunit, indicating that the activation of this transcription factor is a relevant signaling pathway involved in the generation of DNA traps. The inhibitory effect of these drugs was also observed when NET generation was induced under acidic or hyperthermic conditions, two stress signals of the inflammatory microenvironment. In a mouse peritonitis model, while pretreatment of animals with ASA or BAY 11-7082 resulted in a marked suppression of NET formation along with increased bacteremia, dexamethasone had no effect. Our results show that NETs have an important role in the local control of infection and that ASA and NF-kB blockade could be useful therapies to avoid undesired effect of persistent neutrophil activation.
Summary
Background
In addition to their key role in hemostasis, platelets and megakaryocytes also regulate immune and inflammatory responses, in part through their expression of Toll-like receptors (TLRs). Among the TLRs, TLR3 recognizes double-stranded (ds) RNA associated with viral infection. Thrombocytopenia is a frequent complication of viral infection. However, the expression and functionality of TLR3 in megakaryocytes and platelets is not yet well understood.
Objective
To study the expression and functionality of TLR3 in the megakaryocytic lineage.
Methods and Results
RT-PCR, flow cytometric, and immunofluorescence assays showed that TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets. Immunoblotting assays showed that stimulation of megakaryocytes with two synthetic agonists of TLR3, Poly(I:C) and Poly(A:U), activated the NF-κB, PI3K/Akt, ERK1/2, and p38 pathways. TLR3-megakaryocyte activation resulted in reduced platelet production in vitro and IFN-β release through the PI3K/Akt and NF-κB signaling pathways. TLR3 ligands potentiated the aggregation mediated by classical platelet agonists. This effect was also observed for ATP release, but not for P-selectin or CD40L membrane exposure, indicating that TLR3 activation was not involved in alpha granule release. In addition, TLR3 agonists induced activation of the NF-κB, PI3K/Akt, and ERK1/2 pathways in platelets. Reduction of platelet production and platelet fibrinogen binding mediated by Poly(I:C) or Poly(A:U) were prevented by the presence of an inhibitor of TLR3/dsRNA complex.
Conclusions
Our findings indicate that functional TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets, and suggest a potential role for this receptor in the megakaryo/thrombopoiesis alterations that occur in viral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.