This study aimed to compare the components of force-velocity (F-V) and power-velocity (P-V) profiles and the mechanical effectiveness of force application (or force ratio–RF) among various sled-towing loads during the entire acceleration phase of a weighted sled sprint. Eighteen sprinters performed four 50-m sprints in various conditions: unloaded; with a load corresponding to 20% of the athlete’s body mass (BM); with a load of 30% BM; and with a load of 40% BM. Data were collected with five video cameras, and the images were digitised to obtain velocity from the derivation of the centre-of-mass position. F-V and P-V components and RF were estimated from sprinting velocity-time data for each load using a validated method that is based on an inverse dynamic approach applied to the sprinter’s centre-of-mass (it models the horizontal antero-posterior and vertical ground reaction force components) and requires only measurement of anthropometric and spatiotemporal variables (body mass, stature and instantaneous position or velocity during the acceleration phase). The theoretical maximal velocity decreased with load compared with the unloaded condition (for 20% BM: -6%, effect size (ES) = 0,38; for 30% BM: -15%, ES = 1.02; for 40% BM: -18%, ES = 1.10). The theoretical maximal horizontal force (F0) and maximal power were not different among conditions. However, power at the end of the acceleration phase increased with load (40% BM vs 0%: 72%; ES = 2.73) as well as the maximal mechanical effectiveness (12%; ES = 0.85). The linear decrease in RF was different between 30 or 40% BM and the unloaded condition (-23%; ES = 0.74 and 0.66). Better effectiveness may be developed with 40% BM load at the beginning of the acceleration and with the various load-induced changes in the components of the F-V and P-V relationships, allowing a more accurate determination of optimal loading conditions for maximizing power.
SUMMARYThe objective was to describe the behavior of the maximum pronation (MP), of the maximum pronation speed (PS) and of the linear crossover (LC) of the right and left feet of 23 distance runners during treadmill running, at speeds ranging from 11 to 13 km . h -1 for female athletes and from 14 to 16 km . h -1 for male athletes, related to an average of 70% -75% of the maximumComparison of the subtalar joint angle during submaximal running speeds aerobic power (VO 2max ). The statistical analysis (Student's T-Test for dependent and independent samples, p<0.05) showed that, by increasing submaximal running power, there was a significant increase on MP, and by increasing running linear speed, the PS was significantly higher. Regarding LC, we believe that this is biased by the running technique used by each runner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.