In the complex scenario of cancer, treatment with compounds targeting multiple cell pathways has been emerging. In Glioblastoma Multiforme (GBM), p53 and Translocator Protein (TSPO), both acting as apoptosis inducers, represent two attractive intracellular targets. On this basis, novel indolylglyoxylyldipeptides, rationally designed to activate TSPO and p53, were synthesized and biologically characterized. The new compounds were able to bind TSPO and to reactivate p53 functionality, through the dissociation from its physiological inhibitor, murine double minute 2 (MDM2). In GBM cells, the new molecules caused Δψm dissipation and inhibition of cell viability. These effects resulted significantly higher with respect to those elicited by the single target reference standards applied alone, and coherent with the synergism resulting from the simultaneous activation of TSPO and p53. Taken together, these results suggest that TSPO/MDM2 dual-target ligands could represent a new attractive multi-modal opportunity for anti-cancer strategy in GBM.
Comparison of the gene-expression profiles of planarians in which all adult pluripotent stem cells (neoblasts) were eliminated and wildtype worms identified a putative neoblast-restricted gene set. This included many genes involved in chromatin modeling and RNA metabolism, suggesting that epigenetic modifications and post-transcriptional regulation are important for neoblast regulation.
Abstract Background: Mammalian stem cells are difficult to access experimentally; model systems that can regenerate offer an alternative way to characterize stem cell related genes. Planarian regeneration depends on adult pluripotent stem cells -the neoblasts. These cells can be selectively destroyed using X-rays, enabling comparison of organisms lacking stem cells with wild-type worms.
Planarian regeneration, based upon totipotent stem cells, the neoblasts, provides a unique opportunity to study in vivo the molecular program that defines a stem cell. In this study, we report the identification of DjPiwi-1, a planarian homologue of Drosophila Piwi. Expression analysis showed that DjPiwi-1 transcripts are preferentially accumulated in small cells distributed along the midline of the dorsal parenchyma. DjPiwi-1 transcripts were not detectable after X-ray irradiation by whole mount in situ hybridization. Real time reverse transcriptase polymerase chain reaction analysis confirmed the significant reduction of DjPiwi-1 expression after X-ray treatment. However, the presence of residual DjPiwi-1 transcription suggests that, although the majority of DjPiwi-1-positive cells can be neoblasts, this gene is also expressed in differentiating/differentiated cells. During regeneration DjPiwi-1-positive cells reorganize along the midline of the stump and no accumulation of hybridization signal was observed either in the blastema area or in the parenchymal region beneath the blastema. DjPiwi-1-positive cells, as well as the DjMCM2-expressing neoblasts located along the midline and those spread all over the parenchyma, showed a lower tolerance to X-ray with respect to the DjMCM2-expressing neoblasts distributed along the lateral lines of the parenchyma. Taken together, these findings suggest the presence of different neoblast subpopulations in planarians.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) - a natural polyphenol component of green tea - to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content. In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.