The donor-acceptor copolymer containing benzothiadiazole (electron acceptor), linked to functionalized fluorene (electron donor), [poly[9,9-bis(3'-(tert-butyl propanoate))fluorene-co-4,7-(2,1,3-benzothiadiazole)] (LaPPS40), was synthesized through the Suzuki route. The polymer was characterized by scanning electron microscopy, gel permeation chromatography, NMR, thermal analysis, cyclic voltammetry, X-ray photoelectron spectroscopy, UV-vis spectrometry, and photophysical measurements. Theoretical calculations (density functional theory and semiempirical methodologies) used to simulate the geometry of some oligomers and the dipole moments of molecular orbitals involved were in excellent agreement with experimental results. Using such data, the higher energy absorption band was attributed to the π-π* (S(0) → S(4)) transition of the fluorene units and the lower lying band was attributed to the intramolecular (ICT) (S(0) → S(1)) charge transfer between acceptor (benzothiadiazole) and donor groups (fluorene) (D-A structure). The ICT character of this band was confirmed by its solvatochromic properties using solvents with different dielectric properties, and this behavior could be well described by the Lippert-Mataga equation. To explain the solvatochromic behavior, both the magnitude and orientation of the dipole moments in the electronic ground state and in the excited state were analyzed using the theoretical data. According to these data, the change in magnitude of the dipole moments was very small for both transitions but the spatial orientation changed remarkably for the lower energy band ascribed to the ICT band.
The in vitro antioxidant properties of golden grass (GG), a grass‐like herb (
Syngonanthus nitens
), were investigated by electron paramagnetic resonance (EPR) spectroscopy. We measured the antioxidant capacity of methanolic extracts based on their ability to scavenge 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical. The kinetics of reaction between DPPH and GG extract was determined. This kinetics followed a biexponential decay, and this behavior was attributed to different flavonoids acting together as antioxidants. Isoorientin and luteolin, which are two of the eight flavonoids found in GG extract, were used to investigate kinetics of reaction between DPPH and both the flavonoids acting separately and together. The antioxidant activity of GG extract was determined in terms of the vitamin C equivalent antioxidant capacity (VCEAC). Compared to other well‐known plant‐based antioxidants, such as pulp and peels of fruit and vegetables,
S. nitens
presented a high antioxidant capacity (VCEAC = 1,485 ± 198 mg/100 g), indicating that it should be regarded as a valuable source of antioxidants and also that it may bestow health benefits when consumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.