Beat-to-beat variation in heart rate (f H) has been used as a tool for elucidating the balance between sympathetic and parasympathetic modulation of the heart. A portion of the temporal changes in f H is evidenced by a respiratory influence (cardiorespiratory interaction) on heart rate variability (HRV) with heartbeats increasing and decreasing within a respiratory cycle. Nevertheless, little is known about respiratory effects on HRV in lower vertebrates. By using frequency domain analysis, we provide the first evidence of a ventilatory component in HRV similar to mammalian respiratory sinus arrhythmia in an amphibian, the toad Rhinella schneideri. Increases in the heartbeats arose synchronously with each lung inflation cycle, an intermittent breathing pattern comprised of a series of successive lung inflations. A well-marked peak in the HRV signal matching lung inflation cycle was verified in toads whenever lung inflation cycles exhibit a regular rhythm. The cardiac beat-to-beat variation evoked at the moment of lung inflation accounts for both vagal and sympathetic influences. This cardiorespiratory interaction may arise from interactions between central and peripheral feedback mechanisms governing cardiorespiratory control and may underlie important cardiorespiratory adjustments for gas exchange improvement especially under extreme conditions like low oxygen availability.
Temperature effects on cardiac autonomic tonus in amphibian larval stages have never been investigated. Therefore, we evaluated the effect of different temperatures (15, 25 and 30°C) on the cardiorespiratory rates and cardiac autonomic tonus of premetamorphic tadpoles of the bullfrog, To this end, a non-invasive method was developed to permit measurements of electrocardiogram (ECG) and buccal movements (; surface electromyography of the buccal floor). For evaluation of autonomic regulation, intraperitoneal injections of Ringer solution (control), atropine (cholinergic muscarinic antagonist) and sotalol (β-adrenergic antagonist) were performed. Ringer solution injections did not affect heart rate () or across temperatures. Cardiorespiratory parameters were significantly augmented by temperature (: 24.5±1.0, 54.5±2.0 and 75.8±2.8 beats min at 15, 25 and 30°C, respectively; : 30.3±1.1, 73.1±4.0 and 100.6±3.7 movements min at 15, 25 and 30°C, respectively). A predominant vagal tone was observed at 15°C (32.0±3.2%) and 25°C (27.2±6.7%) relative to the adrenergic tone. At 30°C, the adrenergic tone increased relative to the lower temperature. In conclusion, the cholinergic and adrenergic tones seem to be independent of temperature for colder thermal intervals (15-25°C), while exposure to a hotter ambient temperature (30°C) seems to be followed by a significant increase in adrenergic tone and may reflect cardiovascular adjustments made to match oxygen delivery to demand. Furthermore, while excluding the use of implantable electrodes or cannulae, this study provides a suitable non-invasive method for investigating cardiorespiratory function (cardiac and respiratory rates) in water-breathing animals such as the tadpole.
Amphibians may be more vulnerable to climate-driven habitat modification because of their complex life cycle dependence on land and water. Considering the current rate of global warming, it is critical to identify the vulnerability of a species by assessing its potential to acclimate to warming temperatures. In many species, thermal acclimation provides a reversible physiological adjustment in response to temperature changes, conferring resilience in a changing climate. Here, we investigate the effects of temperature acclimation on the physiological performance of tadpoles of a stream-breeding savanna tree frog (Bokermannohyla ibitiguara) in relation to the thermal conditions naturally experienced in their microhabitat (range: 18.8–24.6°C). We quantified performance measures such as routine and maximum metabolic rate at different test (15, 20, 25, 30, and 34°C) and acclimation temperatures (18 and 25°C). We also measured heart rate before and after autonomic blockade with atropine and sotalol at the respective acclimation temperatures. Further, we determined the critical thermal maximum and warming tolerance (critical thermal maximum minus maximum microhabitat temperature), which were not affected by acclimation. Mass-specific routine and mass-specific maximum metabolic rate, as well as heart rate, increased with increasing test temperatures; however, acclimation elevated mass-specific routine metabolic rate while not affecting mass-specific maximum metabolic rate. Heart rate before and after the pharmacological blockade was also unaffected by acclimation. Aerobic scope in animals acclimated to 25°C was substantially reduced, suggesting that physiological performance at the highest temperatures experienced in their natural habitat is compromised. In conclusion, the data suggest that the tadpoles of B. ibitiguara, living in a thermally stable environment, have a limited capacity to physiologically adjust to the highest temperatures found in their micro-habitat, making the species more vulnerable to future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.