Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.
Magnetic nanoparticles (MNPs) have shown exceptional potential for several biological and clinical applications. However, MNPs must be coated by a biocompatible shell for such applications. The aim of this study is to understand if and how the surface charge and coating can affect the electronic and magnetic properties of CoFe2O4 MNPs. The role of the surface on the total magnetic moment of MNPs is a controversial issue, and several effects can contribute to make it deviate from the bulk value, including the charge, the nature of the coating, and also the synthetic technique. Positively and negatively charged uncoated CoFe2O4 NPs as well as citrate-coated NPs were prepared by soft chemistry synthesis. The electronic properties and cationic distribution of CoFe2O4 NPs were probed by X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and X-ray photoemission spectroscopy (XPS) techniques and confirmed by theoretical simulations. The overall magnetic behavior and the hyperthermic properties were evaluated by magnetometry and calorimetric measurements, respectively. The results show that all of the investigated CoFe2O4 NPs have high magnetic anisotropy energy, and the surface charge and coating do not influence appreciably their electronic and magnetic properties. In addition, the citrate shell improves the stability of the NPs in aqueous environment, making CoFe2O4 NPs suitable for biomedical applications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.