We have studied the gate and temperature dependence of molecular junctions containing sulfur end-functionalized tercyclohexylidenes. At low temperatures we find temperature-independent transport; at temperatures above 150 K the current increases exponentially with increasing temperature. Over the entire temperature range (10−300 K), and for different gate voltages, a simple toy model of transport through a single level describes the experimental results. In the model, the temperature dependence arises from the Fermi distribution in the leads and in a three-parameter fit we extract the level position and the tunnel rates at the left and right contact. We find that these parameters increase as the bias voltage increases.
Explicit ab initio current‐density maps contradict the annulene‐within‐an‐annulene model of [n]circulenes: in both coronene and corannulene the expected diamagnetic current on the perimeter is opposed by the central, paramagnetic ring current (see schematic representation).
A variety of para-substituted NCN-pincer palladium(II) and platinum(II) complexes [MX(NCN-Z)] (M=Pd(II), Pt(II); X=Cl, Br, I; NCN-Z=[2,6-(CH(2)NMe(2))(2)C(6)H(2)-4-Z](-); Z=NO(2), COOH, SO(3)H, PO(OEt)(2), PO(OH)(OEt), PO(OH)(2), CH(2)OH, SMe, NH(2)) were synthesised by routes involving substitution reactions, either prior to or, notably, after metalation of the ligand. The solubility of the pincer complexes is dominated by the nature of the para substituent Z, which renders several complexes water-soluble. The influence of the para substituent on the electronic properties of the metal centre was studied by (195)Pt NMR spectroscopy and DFT calculations. Both the (195)Pt chemical shift and the calculated natural population charge on platinum correlate linearly with the sigma(p) Hammett substituent constants, and thus the electronic properties of predesigned pincer complexes can be predicted. The sigma(p) value for the para-PtI group itself was determined to be -1.18 in methanol and -0.72 in water/methanol (1/1). Complexes substituted with protic functional groups (CH(2)OH, COOH) exist as dimers in the solid state due to intermolecular hydrogen-bonding interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.