Students' perception of classes measured through their opinions on teaching surveys allows to identify deficiencies and problems, both in the environment and in the learning methodologies. The purpose of this paper is to study, through sentiment analysis using natural language processing (NLP) and machine learning (ML) techniques, those opinions in order to identify topics that are relevant for students, as well as predicting the associated sentiment via polarity analysis. As a result, it is implemented, trained and tested two algorithms to predict the associated sentiment as well as the relevant topics of such opinions. The combination of both approaches then becomes useful to identify specific properties of the students' opinions associated with each sentiment label (positive, negative or neutral opinions) and topic. Furthermore, we explore the possibility that students' perception surveys are carried out without closed questions, relying on the information that students can provide through open questions where they express their opinions about their classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.