Host shifts can lead to ecological speciation and the emergence of new pests and pathogens. However, the mutational events that facilitate the exploitation of novel hosts are poorly understood. Here, we characterize an adaptive walk underpinning the host shift of the aphid Myzus persicae to tobacco, including evolution of mechanisms that overcame tobacco chemical defenses. A series of mutational events added as many as 1.5 million nucleotides to the genome of the tobacco-adapted subspecies, M. p. nicotianae, and yielded profound increases in expression of an enzyme that efficiently detoxifies nicotine, both in aphid gut tissue and in the bacteriocytes housing the obligate aphid symbiont Buchnera aphidicola. This dual evolutionary solution overcame the challenge of preserving fitness of a mutualistic symbiosis during adaptation to a toxic novel host. Our results reveal the intricate processes by which genetic novelty can arise and drive the evolution of key innovations required for ecological adaptation.
Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity and mortality around the world. Recent advances in gene drives have produced control methods that could theoretically modify all populations of a disease vector, from a single release, making whole species less able to transmit pathogens. This ability has caused both excitement, at the prospect of global eradication of mosquito-borne diseases, and concern around safeguards. Drive mechanisms that require individuals to be released at high frequency before genes will spread can therefore be desirable as they are potentially localised and reversible. These include underdominance-based strategies and use of the reproductive parasite Wolbachia. Here, we review recent advances in practical applications and mathematical analyses of these threshold-dependent gene drives with a focus on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness costs on introduction frequencies. Drawing on the parallels between these systems offers useful insights into practical, controlled application of localised drives, and allows us to assess the requirements needed for gene drive reversal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.