Recurrent neural networks (RNNs) have emerged as a promising tool in modeling nonlinear dynamical systems. The convergence is one of the most important issues of concern among the dynamical properties for the RNNs in practical applications. The reason is that the viability of many applications of RNNs depends on their convergence properties. We study in this paper the convergence properties of the weighted state space search algorithm (WSSSA)a derivative-free and non-random learning algorithm which searches the neighborhood of the target trajectory in the state space instead of the parameter space. Because there is no computation of partial derivatives involved, the WSSSA has a couple of salient features such as simple, fast and cost effective. In this study we provide a necessary and sufficient condition that required for the convergence of the WSSSA. Restrictions are offered that may help assure convergence of the of the WSSSA to the desired solution. The asymptotic rate of convergence is also analyzed. Our study gives insights into the problem and provides useful information for the actual design of the RNNs. A numerical example is given to support the theoretical analysis and to demonstrate that it is applicable to many applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.