This paper extends the performance assessment of an underwater glider path planning approach recently proposed for constrained sub-mesoscale eddy border sampling conditions, for situations benefiting from extended mission planning time. The aim of addressing such situations is to improve the glider vehicle capabilities through improving its off-board controller, which computes an improved trajectory for the eddy sampling task, compared to the usual rather shorter planning time. The improvement in robustness for the controller for several scenarios in this global trajectory optimization is also analyzed, together with comparison to shorter planning time for this autonomous vehicle and environmental data sampling type. As shown through results, the approach is able to provide several useful and non-intuitive solutions, improving in helpful ways. The trajectories for sub-mesoscale eddy sampling are thereby improved, in a way that might be useful for possible machine controller pondering or auto-piloting at open sea, when piloting user feedback is not available or even amidst the consecutive interruptions of user-intensive planning instructions. Managing complexity under limited resources and designing vessel navigation schedule plan under uncertain conditions within such extended mission planning time, therefore improves the mission quality as well. By optimizing trajectories with differential evolution and then visualizing them, we provide humanmachine interaction for rapid knowledge discovery, data mining, and presentation of possibly large space satellite captured data sets (Big Data) analysis and exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.