Although t-loops protect telomeres, they are at risk of cleavage by Holliday junction (HJ) resolvases if branch migration converts the three-way t-loop junction into four-way HJs. T-loop cleavage is repressed by the TRF2 basic domain, which binds three- and four-way junctions and protects HJs in vitro. By replacing the basic domain with bacterial-protein domains binding three- and four-way junctions, we demonstrated the in vivo relevance of branched-DNA binding. Branched-DNA binding also repressed PARP1, presumably by masking the PARP1 site in the t-loop junction. Although PARP1 recruits HJ resolvases and promotes t-loop cleavage, PARP1 activation alone did not result in t-loop cleavage, thus suggesting that the basic domain also prevents formation of HJs. Concordantly, removal of HJs by BLM helicase mitigated t-loop cleavage in response to loss of the basic domain. We propose that TRF2 masks and stabilizes the t-loop three-way junction, thereby protecting telomeres from detrimental deletions and PARP1 activation.
Chromosomal double-strand breaks (DSBs) that have only one end with homology to a donor duplex undergo repair by strand invasion followed by replication to the chromosome terminus (break-induced replication, BIR). Using a transformation-based assay system, it was previously shown that BIR could occur by several rounds of strand invasion, DNA synthesis, and dissociation. Here we describe a modification of the transformation-based assay to facilitate detection of switching between donor templates during BIR by genetic selection in diploid yeast. In addition to the expected recovery of template switch products, we found a high frequency of recombination between chromosome homologs during BIR, suggesting transfer of the DSB from the transforming linear DNA to the donor chromosome, initiating secondary recombination events. The frequency of BIR increased in the mph1Δ mutant, but the percentage of template switch events was significantly decreased, revealing an important role for Mph1 in promoting BIR-associated template switching. In addition, we show that the Mus81, Rad1, and Yen1 structure-selective nucleases act redundantly to facilitate BIR.
The Mre11-Rad50-Xrs2/NBS1 (MRX/N) nuclease/ATPase complex plays structural and catalytic roles in the repair of DNA doublestrand breaks (DSBs) and is the DNA damage sensor for Tel1/ATM kinase activation. Saccharomyces cerevisiae Sae2 can function with MRX to initiate 5′-3′ end resection and also plays an important role in attenuation of DNA damage signaling. Here we describe a class of mre11 alleles that suppresses the DNA damage sensitivity of sae2Δ cells by accelerating turnover of Mre11 at DNA ends, shutting off the DNA damage checkpoint and allowing cell cycle progression. The mre11 alleles do not suppress the end resection or hairpinopening defects of the sae2Δ mutant, indicating that these functions of Sae2 are not responsible for DNA damage resistance. The purified M P110L RX complex shows reduced binding to single-and double-stranded DNA in vitro relative to wild-type MRX, consistent with the increased turnover of Mre11 from damaged sites in vivo. Furthermore, overproduction of Mre11 causes DNA damage sensitivity only in the absence of Sae2. Together, these data suggest that it is the failure to remove Mre11 from DNA ends and attenuate Rad53 kinase signaling that causes hypersensitivity of sae2Δ cells to clastogens.DNA repair | Mre11 | Sae2 | DNA damage checkpoint
T-loops are thought to hide telomeres from DNA damage signaling and DSB repair pathways. Tloop formation requires the shelterin component TRF2, which represses ATM signaling and NHEJ. Here we establish that TRF2 alone, in the absence of other shelterin proteins can form t-loops. Mouse and human cells contain two isoforms of TRF2, one of which is uncharacterized. We show that both isoforms protect telomeres and form t-loops. The isoforms are not cell cycle regulated and t-loops are present in G1, S, and G2. Using the DNA wrapping deficient TRF2 Topless mutant, we confirm its inability to form t-loops and repress ATM. However, since the mutant is also defective in repression of NHEJ and telomeric localization, the role of topological changes in telomere protection remains unclear. Finally, we show that Rad51 does not affect t-loop frequencies or telomere protection. Therefore, alternative models for how TRF2 forms t-loops should be explored.
Telomeres are protected by shelterin, a six-subunit protein complex that represses the DNA damage response (DDR) at chromosome ends. Extensive data suggest that TRF2 in shelterin remodels telomeres into the t-loop structure, thereby hiding telomere ends from double-stranded break repair and ATM signaling, whereas POT1 represses ATR signaling by excluding RPA. An alternative protection mechanism was suggested recently by which shelterin subunits TRF1, TRF2, and TIN2 mediate telomeric chromatin compaction, which was proposed to minimize access of DDR factors. We performed superresolution imaging of telomeres in mouse cells after conditional deletion of TRF1, TRF2, or both, the latter of which results in the complete loss of shelterin. Upon removal of TRF1 or TRF2, we observed only minor changes in the telomere volume in most of our experiments. Upon codeletion of TRF1 and TRF2, the telomere volume increased by varying amounts, but even those samples exhibiting small changes in telomere volume showed DDR at nearly all telomeres. Upon shelterin removal, telomeres underwent 53BP1-dependent clustering, potentially explaining at least in part the apparent increase in telomere volume. Furthermore, chromatin accessibility, as determined by ATAC-seq (assay for transposase-accessible chromatin [ATAC] with high-throughput sequencing), was not substantially altered by shelterin removal. These results suggest that the DDR induced by shelterin removal does not require substantial telomere decompaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.