The goal of our research was to develop methods based on convolutional neural networks for automatically extracting the locations of buildings from high-resolution aerial images. To analyze the quality of developed deep learning algorithms, there was used Sorensen-Dice coefficient of similarity which compares results of algorithms with real masks. These masks were generated automatically from json files and sliced on smaller parts together with respective aerial photos before the training of developed convolutional neural networks. This approach allows us to cope with the problem of segmentation for high-resolution satellite images. All in all we show how deep neural networks implemented and launched on modern GPUs of high-performance supercomputer NVIDIA DGX-1 can be used to efficiently learn and detect needed objects. The problem of building detection on satellite images can be put into practice for urban planning, building control of some municipal objects, search of the best locations for future outlets etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.