We introduce a new Bayesian adaptive method for acquisition of both threshold and slope of the psychometric function. The method updates posterior probabilities in the two-dimensional parameter space of psychometric functions and makes predictions based on the expected mean threshold and slope values. On each trial it sets the stimulus intensity that maximizes the expected information to be gained by completion of that trial. The method was evaluated in computer simulations and in a psychophysical experiment using the two-alternative forced-choice (2AFC) paradigm. Threshold estimation within 2 dB (23%) precision requires less than 30 trials for a typical 2AFC detection task. To get the slope estimate with the same precision takes about 300 trials.
Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J. Neurophysiol. 78: 2772-2789, 1997. The direction selectivity of simple cells in the visual cortex is generated at least in part by nonlinear mechanisms. If a neuron were spatially linear, its responses to moving stimuli could be predicted accurately from linear combinations of its responses to stationary stimuli presented at different positions within the receptive field. In extracellular recordings, this has not been found to be the case. Although the extracellular experiments demonstrate the presence of a nonlinearity, the cellular process underlying the nonlinearity, whether an early synaptic mechanism such as a shunting inhibition or simply the spike threshold at the output, is not known. To differentiate between these possibilities, we have recorded intracellularly from simple cells of the intact cat with the whole cell patch technique. A linear model of direction selectivity was used to analyze the synaptic potentials evoked by stationary sine-wave gratings. The model predicted the responses of cells to moving gratings with considerable accuracy. The degree of direction selectivity and the time course of the responses to moving gratings were both well matched by the model. The direction selectivity of the synaptic potentials was considerably smaller than that of the intracellularly recorded action potential, indicating that a nonlinear mechanism such as threshold enhances the direction selectivity of the cell's output over that of its synaptic inputs. At the input stage, however, the cells apparently sum their synaptic inputs in a highly linear fashion. A more constrained test of linearity of synaptic summation based on principal component analysis was applied to the responses of direction-selective cells to stationary gratings. The analysis confirms that the summation in these cells is highly linear. The principal component analysis is consistent with a model in which direction selectivity in cortical simple cells is generated by only two subunits, each with a different receptive-field position and response time course. The response time course for each of the two subunits is derived for four analyzed cells. Each derived subunit is linear in spatial summation, suggesting that the neurons that comprise each subunit are either geniculate X-cells or receive their primary synaptic input from X-cells. The amplitude of the response of each subunit is linearly related to the contrast of the stimulus. The subunits are nonlinear in the time domain, however: the response to a stationary stimulus whose contrast is modulated sinusoidally in time is nonsinusoidal. The principal component analysis does not exclude models of direction selectivity based on more than two subunits, but such higher-order models would have to include the constraint that the extra subunits form a smooth continuum of interpolation between the properties derived from the two subunit solution.
Retinotopic mapping is a key property of organization of occipital cortex, predominantly on the medial surface but increasingly being identified in lateral and ventral regions. The retinotopic organization of early visual areas V1-3 is well established, although anatomical landmarks can help to resolve ambiguities in poorly-defined functional maps. New morphing techniques are now available to define the metric mappings quantitatively within each retinotopic area. In the dorsal occipital regions, there is fair agreement that area V3A should be split into separate V3A and V3B maps, and that beyond them lies a further area, V7. We specify the eccentricity mapping of both V3B and V7 for the first time, showing how the latter is roughly parallel to the meridional mapping and offering formal accounts of such paradoxical behavior. In ventral occipital cortex, we support the analysis of Zeki and Bartels [1] and Wade et al.[2] that V4 maps the full hemifield, and show the existence of two more areas, a ventromedial map of the lower quadrant, emphasizing the upper vertical meridian, and an adjacent area with a dominant foveal representation. In lateral cortex, the motion area defined by a motion localizer shows pronounced retinotopy, particularly in the eccentricity parameter. A dorsolateral map between the motion area and V3B, which represents the lower quadrant with an emphasis the foveal part of the lower vertical meridian, may be a counterpart to the ventromedial map.
A psychophysical method is proposed to separate the contrast dependence of internal response and its noise. The resulting contrast relationships represent a signature of the visual processing stage that limits the human observer's performance. The method was applied to contrast discrimination for sustained and transient Gabor patches with a 3 cycle/deg spatial carrier. For both stimulus types the predominant noise was found to be multiplicative with a power exponent of 0.76-0.85 and the source of this noise preceded by an accelerating signal transducer with a power of 2-2.7. These exponents combine to account for the classic compressive power of about 0.4 for the signal-to-noise ratio in contrast discrimination. The estimated transducer acceleration suggests that there is a direct computation of contrast energy in the visual cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.