<p><strong>Abstract.</strong> Accumulating the motion information from a video sequence is one of the highly challenging and significant phase in Human Action Recognition. To achieve this, several classical and compact representations are proposed by the research community with proven applicability. In this paper, we propose a compact Depth Motion Map based representation methodology with hastey striding, consisely accumulating the motion information. We extract Undecimated Dual Tree Complex Wavelet Transform features from the proposed DMM, to form an efficient feature descriptor. We designate a Sequential Extreme Learning Machine for classifying the human action secquences on benchmark datasets, MSR Action 3D dataset and DHA Dataset. We empirically prove the feasability of our method under standard protocols, achieving proven results.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.