This article shows the results of early crop yield prediction from remote-sensing data. The study was carried out in Kansas, USA. The methodology proposed allows the estimation of winter wheat (WW), sorghum and corn yields 3-4 months before harvest. The procedure uses the vegetation health (VH) indices (vegetation condition index (VCI) and temperature condition index (TCI)) computed for each pixel and week over a 21-year period from the Advanced Very High Resolution Radiometer (AVHRR) data. Over this period, a strong correlation was found between crop yield and VH indices during the weather-related critical period of crop development, which controls much final crop productivity. The 3-month advanced yield forecasts were independently compared with official agricultural statistics, showing that the estimation errors for WW, sorghum and corn were 8%, 6% and 3%, respectively. Implementing the 3-4 months lead forecast in operational practice will aid farmers to mitigate weather vagaries using irrigation, diseases/insects control, application of fertilizers and so on during a growing season and will help decision-makers to regulate marketing strategies, import/export and price policies and address food security issues.
This paper shows the application of remote sensing data for estimating winter wheat yield in Kansas. An algorithm uses the Vegetation Health (VH) Indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI)) computed for each week over a period of 23 years from Advance Very High Resolution Radiometer (AVHRR) data. The weekly indices were correlated with the end of the season winter wheat (WW) yield. A strong correlation was found between winter wheat yield and VCI (characterizing moisture conditions) during the critical period of winter wheat development and productivity that occurs during April to May (weeks 16 to 23). Following the results of correlation analysis, the principal components regression (PCR) method was used to construct a model to predict yield as a function of the VCI computed for this period. The simulated results were compared with official agricultural statistics showing that the errors of the estimates of winter wheat yield are less than 8%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.
Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991–2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March–April (weeks 8–13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.
Epidemiologic data of malaria cases were correlated with satellite-based vegetation health (VH) indices to investigate if they can be used as proxy for monitoring malaria epidemics in Bangladesh. The VH indices were represented by the vegetation condition index (VCI) and the temperature condition index (TCI). The VCI and TCI estimate moisture and thermal conditions, respectively. Sensitivity of VCI and TCI was assessed using correlation and regression analysis. During cooler months (November-March) when mosquitoes are less active, the correlation was low. It increased considerably during the warm and wet season (April-October), reaching 0.7 for the TCI in early October and -0.66 for the VCI in mid September.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.