Oyster mushrooms are an interesting source of biologically active glucans and other polysaccharides. This work is devoted to the isolation and structural characterization of polysaccharides from basidiocarps of the cultivated oyster mushroom, Pleurotus ostreatus. Five polysaccharidic fractions were obtained by subsequent extraction with cold water, hot water and two subsequent extractions with 1 m sodium hydroxide. Branched partially methoxylated mannogalactan and slightly branched (1→6)-β-d-glucan predominated in cold- and hot-water-soluble fractions, respectively. Alternatively, these polysaccharides were obtained by only hot water extraction and subsequent two-stage chromatographic separation. The alkali-soluble parts originating from the first alkali extraction were then fractionated by dissolution in dimethyl sulfoxide (DMSO). The polysaccharide insoluble in DMSO was identified as linear (1→3)-α-d-glucan, while branched (1→3)(1→6)-β-d-glucans were found to be soluble in DMSO. The second alkaline extract contained the mentioned branched β-d-glucan together with some proteins. Finally, the alkali insoluble part was a cell wall complex of chitin and β-d-glucans.
In this study, we focused on the isolation and structural characterization of polysaccharides from a basidiocarp of polypore fungus Ganoderma resinaceum. Polysaccharide fractions were obtained by successive extractions with cold water at room temperature (20 °C), hot water under reflux (100 °C), and a solution of 1 mol L−1 sodium hydroxide. The purity of all fractions was controlled mainly by Fourier transform infrared (FTIR) spectroscopy, and their composition and structure were characterized by organic elemental analysis; neutral sugar and methylation analyses by gas chromatography equipped with flame ionization detector (GC/FID) and mass spectrometry detector (GC/MS), respectively; and by correlation nuclear magnetic resonance (NMR) spectroscopy. The aqueous extracts contained two main polysaccharides identified as a branched O-2-β-d-mannosyl-(1→6)-α-d-galactan and a highly branched (1→3)(1→4)(1→6)-β-d-glucan. Mannogalactan predominated in the cold water extract, and β-d-glucan was the main product of the hot water extract. The hot water soluble fraction was further separated by preparative anion exchange chromatography into three sub-fractions; two of them were identified as branched β-d-glucans with a structure similar to the corresponding polysaccharide of the original fraction. The alkaline extract contained a linear (1→3)-α-d-glucan and a weakly branched (1→3)-β-d-glucan having terminal β-d-glucosyl residues attached to O-6 of the backbone. The insoluble part after all extractions was identified as a polysaccharide complex containing chitin and β-d-glucans.
Fruiting bodies (basidiocarps) of the cultivated mushroom Pleurotus ostreatus (16 strains) were characterized by vibration spectroscopy and chemometrics. According to organic elemental analysis and Megazyme assay, the basidiocarps contained ~6.2–17.5% protein and ~18.8–58.2% total glucans. The neutral sugar analysis confirmed that glucose predominated in all the samples (~71.3–94.4 mol%). Fourier-transformed (FT) mid- and near-infrared (FT MIR, FT NIR) and FT Raman spectra of the basidiocarps were recorded, and the characteristic bands of proteins, glucans and chitin were assigned. The samples were discriminated based on principal component analysis (PCA) of the spectroscopic data in terms of biopolymeric composition. The partial least squares regression (PLSR) models based on first derivatives of the vibration spectra were obtained for the prediction of the macromolecular components, and the regression coefficients R2 and root mean square errors (RMSE) were calculated for the calibration (cal) of proteins (R2cal 0.981–0.994, RMSEcal ~0.3–0.5) and total glucans (R2cal 0.908–0.996, RMSEcal ~0.6–3.0). According to cross-validation (CV) diagnosis, the protein models were more precise and accurate (R2cv 0.901–0.970, RMSEcv ~0.6–1.1) than the corresponding total glucan models (R2cv 0.370–0.804, RMSEcv ~4.7–8.5) because of the wide structural diversity of these polysaccharides. Otherwise, the Raman band of phenylalanine ring breathing vibration at 1004 cm−1 was used for direct quantification of proteins in P. ostreatus basidiocarps (R ~0.953). This study showed that the combination of vibration spectroscopy with chemometrics is a powerful tool for the evaluation of culinary and medicinal mushrooms, and this approach can be proposed as an alternative to common analytical methods.
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.