Cell cycle checkpoints and tumor suppressor gene functions appear to be required for the maintenance of a stable genome in proliferating cells. In this study chromosomal destabilization was monitored in relation to telomere structure, lifespan control and G2 checkpoint function. Replicative senescence was inactivated in secondary cultures of human skin ®broblasts by expressing the human papillomavirus type 16 (HPV-16) E6 oncoprotein to inactivate p53. Chromosome aberrations were enumerated during in vitro aging of isogenic control (F5neo) and HPV-16E6-expressing (F5E6) ®broblasts. We found that structural and numerical aberrations in chromosomes were signi®cantly increased in F5E6 cells during aging in vitro and¯uorescence in situ hybridization (FISH) analysis using chromosome-speci®c probes demonstrated the occurrence of rearrangements involving chromosome 4 and 6 in genetically unstable F5E6 cells. Flow cytometry and karyotypic analyses revealed increased polyploidy and aneuploidy in F5E6 cells only at passages 416, although these cells displayed defective mitotic spindle checkpoint function associated with inactivation of p53 at passages 5 and 16. G2 checkpoint function was con®rmed to be gradually but progressively inactivated during in vitro aging of E6-expressing cells. Aging of F5neo ®broblasts was documented during in vitro passaging by induction of a senescence-associated marker, pH 6.0 lysosomal b-galactosidase. F5E6 cells displayed extension of in vitro lifespan and did not induce b-galactosidase at high passage. Erosion of telomeres during in vitro aging of telomerase-negative F5neo cells was demonstrated by Southern hybridization and by quantitative FISH analysis on an individual cell level. Telomeric signals diminished continuously as F5neo cells aged in vitro being reduced by 80% near the time of replicative senescence. Telomeric signals detected by FISH also decreased continuously during aging of telomerasenegative F5E6 cells, but telomeres appeared to be stabilized at passage 34 when telomerase was expressed. Chromosomal instability in E6-expressing cells was correlated (P50.05) with both loss of telomeric signals and inactivation of G2 checkpoint function. The results suggest that chromosomal stability depends upon a complex interaction among the systems of telomere length maintenance and cell cycle checkpoints.
Constitutive radiation hypersensitivity in blood lymphocytes and lymphoblasts was not a useful biomarker for identifying women at increased risk of breast cancer.
DNA topoisomerase II is required in the cell cycle to decatenate intertwined daughter chromatids prior to mitosis. To study the mechanisms that cells use to accomplish timely chromatid decatenation, the activity of a catenation-responsive checkpoint was monitored in human skin fibroblasts with inherited or acquired defects in the DNA damage G2 checkpoint. G2 delay was quantified shortly after a brief incubation with ICRF-193, which blocks the ability of topoisomerase II to decatenate chromatids, or treatment with ionizing radiation (IR), which damages DNA. Both treatments induced G2 delay in normal human fibroblasts. Ataxia telangiectasia fibroblasts with defective G2 checkpoint response to IR displayed normal G2 delay after treatment with ICRF-193, demonstrating that ATM kinase was not required for signaling when chromatid decatenation was blocked. The G2 delay induced by ICRF-193 was reversed by caffeine, indicating that active checkpoint signaling was involved. ICRF-193-induced G2 delay also was independent of p53 function, being evident in cells expressing HPV16E6 to inactivate p53. However, as fibroblasts expressing HPV16E6 aged in culture, they lost the ability to delay entry to mitosis, both after DNA damage and when decatenation was blocked. This age-related loss of G2 delay in response to ICRF-193 and IR in E6-expressing cells was blocked by induction of telomerase. Expression of telomerase also prevented chromosomal destabilization in aging E6-expressing cells. These observations lead to a new model of genetic instability, in which attenuation of G2 decatenatory checkpoint function permits cells to enter mitosis with insufficiently decatenated chromatids, leading to aneuploidy and polyploidy.
Telomeres, which are specialized structures consisting of T2AG3 repeats and proteins at the ends of chromosomes, may be essential for genomic stability. To test whether telomere length maintenance preserves genomic stability in rats (Rattus rattus and Fischer 344), we assayed telomerase activity and telomere length in the rat hepatic epithelial stem-like cell line WB-F344 during aging in vitro and in tumor-derived lines. Telomerase activity in the parental WB-F344 line was repressed at low and intermediate passage levels in vitro and reexpressed at high passages. Southern blot hybridization and quantitative fluorescence in situ hybridization analyses demonstrated that telomeres were significantly eroded at intermediate passage levels, when telomerase was repressed, and at high passage levels, when telomerase was expressed. Fluorescence in situ hybridization analysis also revealed interstitial telomeric sequences in rat chromosomes. Tumor-derived WB-F344 cell lines that express telomerase had variably shortened telomeres. Cytogenetic analyses performed on WB-F344 cells at low, intermediate, and high passages demonstrated that chromosome instability was most severe in the intermediate passage cells. These data suggest that telomere shortening during aging of rat hepatic epithelial stem-like WB-F344 cells in vitro and during selection of tumorigenic lines in vivo may destabilize chromosomes. Expression of telomerase in high passage cells appeared to partially stabilize chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.