Probing and imaging techniques that are conventionally used for failure analysis pose a major threat to the confidentiality and the integrity of data stored in non-volatile memory (NVM) cells integrated into a silicon chip. These techniques fall under the umbrella of physical attacks, which unlock tremendous capabilities for an attacker trying to access secret information stored in a target NVM. How vulnerable an NVM cell is to these attacks depends on device physics and the operational principles of the memory cell. The wide range of emerging NVM technologies opens new opportunities for attackers. Without significant attention to these emerging threats, confidential data stored in NVMs can get compromised without much effort, given access to advanced failure analysis tools. We aim to show how attackers can use their knowledge of how a memory device works to find out a suitable probing or imaging modality to extract the stored secret.
This article describes how physical attacks can be launched on different types of nonvolatile memory (NVM) cells using failure analysis tools. It explains how the bit information stored inside these devices is susceptible to read-out and fault injection attacks and defines vulnerability parameters to help quantify risks associated with different modalities of attack. It also presents an in-depth security analysis of emerging NVM technologies and discusses potential countermeasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.