In this chapter a general mathematical model of Optical Coherence Tomography (OCT) is presented on the basis of the electromagnetic theory. OCT produces high resolution images of the inner structure of biological tissues. Images are obtained by measuring the time delay and the intensity of the backscattered light from the sample considering also the coherence properties of light. The scattering problem is considered for a weakly scattering medium located far enough from the detector. The inverse problem is to reconstruct the susceptibility of the medium given the measurements for different positions of the mirror. Different approaches are addressed depending on the different assumptions made about the optical properties of the sample. This procedure is applied to a full field OCT system and an extension to standard (time and frequency domain) OCT is briefly presented.
We investigate a quantitative thermoacoustic tomography process. We aim to recover the electric susceptibility and the conductivity of a medium when the sources are in the microwaves range. We focus on the case where the source signal has a slow time-varying envelope. We present the direct problem coupling equations for the electric field, the temperature variation and the pressure (to be measured via sensors). Then we give a variational formulation of the inverse problem which takes into account the entire electromagnetic, thermal and acoustic coupled system, and perform the formal computation of the optimality system.
In this paper we consider the direct scattering problem of obliquely incident time-harmonic electromagnetic plane waves by an infinitely long dielectric cylinder. We assume that the cylinder and the outer medium are homogeneous and isotropic. From the symmetry of the problem, Maxwell's equations are reduced to a system of two 2D Helmholtz equations in the cylinder and two Helmholtz equations in the exterior domain coupled on the boundary. We prove uniqueness and existence of this differential system by formulating an equivalent system of integral equations using the direct method. We transform this system into a Fredholm type system of boundary integral equations taking advantage of Maue's formula for hypersingular operators. Applying a collocation method we derive an efficient numerical scheme and provide accurate numerical results using as test cases transmission problems corresponding to analytic fields derived from fundamental solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.