Surgical treatment is effective for most patients undergoing operative repair of PETEF, notwithstanding a considerable risk of postoperative morbidity and death. Although fistula repair is life saving and prevents further respiratory deterioration, return to oral alimentation is not ensured.
Clinical studies of Phyllanthus emblica (P. emblica) have shown that it increases production of nitric oxide, glutathione, and high-density lipoprotein (HDL); decreases low-density lipoprotein (LDL), total cholesterol, triglycerides, and high-sensitivity C-reactive protein (hsCRP); and significantly inhibits platelet aggregation. The following study was designed to examine the effect of P. emblica treatment on myocardial ischemia-reperfusion (I/R) injury and identify the molecular targets and its underlying mechanism(s). Experimental animals were divided into four groups: control sham (CS), P. emblica sham (PS), control I/R (CIR), and P. emblica I/R (PIR). Rats in the P. emblica groups were gavaged with aqueous P. emblica solution (100 mg/kg body weight) for 30 days. After 30 days of gavaging, the I/R group underwent I/R surgery (45-min ischemia) followed by 4 or 30 days of reperfusion. Rats in the sham group underwent surgery without ligation. Left ventricular tissue samples, 4 and 30 days after I/R, were used for Western blot analysis and immunohistochemistry, respectively. Western blot analysis showed upregulation of phosphorylated Akt and GSK3-β and increased nuclear translocation of β-catenin in the PIR group versus CIR. PIR rats also indicated reduced 3-nitrotyrosine and Caspase-3 expression. Increased phosphorylation of endothelial nitric oxide synthase (p-eNOS) and upregulation of anti-apoptotic protein Bcl-2 were found in the PIR group. Echocardiography showed increased ejection fraction and fractional shortening and decreased left ventricular internal diameter in experimental subjects compared to controls. There was decreased fibrosis in P. emblica-treated rats compared to controls. The results of this study indicate that P. emblica is capable of upregulating the PI3K/Akt/GSK3β/β-catenin cardioprotective pathway, thereby preserving cardiac tissue during ischemia-reperfusion injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.