Background The semi-sitting position in neurosurgical procedures is still under debate due to possible complications such as venous air embolism (VAE) or postoperative pneumocephalus (PP). Studies reporting a high frequency of the latter raise the question about the clinical relevance (i.e., the incidence of tension pneumocephalus) and the efficacy of a treatment by an air replacement procedure. Methods This retrospective study enrolled 540 patients harboring vestibular schwannomas who underwent posterior fossa surgery in a supine (n = 111) or semi-sitting (n = 429) position. The extent of the PP was evaluated by voxel-based volumetry (VBV) and related to clinical predictive factors (i.e., age, gender, position, duration of surgery, and tumor size). Results PP with a mean volume of 32 ± 33 ml (range: 0–179.1 ml) was detected in 517/540 (96%) patients. The semi-sitting position was associated with a significantly higher PP volume than the supine position (40.3 ± 33.0 ml [0–179.1] and 0.8 ± 1.4 [0–10.2], p < 0.001). Tension pneumocephalus was observed in only 14/429 (3.3%) of the semi-sitting cases, while no tension pneumocephalus occurred in the supine position. Positive predictors for PP were higher age, male gender, and longer surgery duration, while large (T4) tumor size was established as a negative predictor. Air exchange via a twist-drill was only necessary in 14 cases with an intracranial air volume > 60 ml. Air replacement procedures did not add any complications or prolong the ICU stay. Conclusion Although pneumocephalus is frequently observed following posterior fossa surgery in semi-sitting position, relevant clinical symptoms (i.e., a tension pneumocephalus) occur in only very few cases. These cases are well-treated by an air evacuation procedure. This study indicates that the risk of postoperative pneumocephalus is not a contraindication for semi-sitting positioning.
ObjectiveTinnitus is one of the most common symptoms before and/or after the surgical removal of a vestibular schwannoma (VS) affecting almost half of the patients. Although there is increasing evidence for the association of hearing impairment and VS-associated tinnitus, the effect of hearing deterioration due to surgery and its relation to the postoperative tinnitus (postTN) is poorly investigated. This knowledge, however, might (i) enlighten the pathophysiology of VS-associated tinnitus (i.e., peripheral or central origin) and (ii) improve preoperative patient counseling. The aim of this study was to understand the predisposition factors for a postTN in relation to hearing outcome after surgery.MethodsThis retrospective study analyzed the presence of tinnitus in 208 patients with unilateral VS before and after surgical removal. A binomial logistic regression was performed to ascertain the effect of pre- and postoperative hearing as well as age, gender, tumor side, and size, and intraoperative cochlear nerve resection (CNR) on the likelihood of postoperative VS-associated tinnitus.ResultsPreoperative tinnitus was the strongest predictor of postTN. In addition, deterioration of functional hearing was increasing, while functional deafferentation (i.e., postoperative hearing loss) of non-functional hearing was reducing the risk of postTN. At the same time, patients with no preoperative tinnitus but complete hearing loss had the lowest risk to suffer from postTN. Patient age, gender, tumor side, and size as well as CNR played a subordinate role.ConclusionWhile the presence of preoperative tinnitus was the strongest predictor of postTN, there is a distinct relationship between hearing outcome and postTN depending on the preoperative situation. Functional or anatomical deafferentation due to surgical tumor removal does not prevent postTN per se.
Background: The integrity of the motor system can be examined by applying navigated transcranial magnetic stimulation (nTMS) to the cortex. The corresponding motor-evoked potentials (MEPs) in the target muscles are mirroring the status of the human motor system, far beyond corticospinal integrity. Commonly used time domain features of MEPs (e.g., peak-to-peak amplitudes and onset latencies) exert a high inter-subject and intra-subject variability. Frequency domain analysis might help to resolve or quantify disease-related MEP changes, e.g., in brain tumor patients. The aim of the present study was to describe the time-frequency representation of MEPs in brain tumor patients, its relation to clinical and imaging findings, and the differences to healthy subject.Methods: This prospective study compared 12 healthy subjects with 12 consecutive brain tumor patients (with and without a paresis) applying nTMS mapping. Resulting MEPs were evaluated in the time series domain (i.e., amplitudes and latencies). After transformation into the frequency domain using a Morlet wavelet approach, event-related spectral perturbation (ERSP), and inter-trial coherence (ITC) were calculated and compared to diffusion tensor imaging (DTI) results.Results: There were no significant differences in the time series characteristics between groups. MEPs were projecting to a frequency band between 30 and 300 Hz with a local maximum around 100 Hz for both healthy subjects and patients. However, there was ERSP reduction for higher frequencies (>100 Hz) in patients in contrast to healthy subjects. This deceleration was mirrored in an increase of the inter-peak MEP latencies. Patients with a paresis showed an additional disturbance in ITC in these frequencies. There was no correlation between the CST integrity (as measured by DTI) and the MEP parameters.Conclusion: Time-frequency analysis may provide additional information above and beyond classical MEP time domain features and the status of the corticospinal system in brain tumor patients. This first evaluation indicates that brain tumors might affect cortical physiology and the responsiveness of the cortex to TMS resulting in a temporal dispersion of the corticospinal transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.