Compressional and shear‐wave velocities were measured in the laboratory from 1 bar to 4 kbar confining pressure for wet, undrained samples of Cretaceous shales from depths of 3200 and 5000 ft in the Williston basin, North Dakota. These shales behave as transversely isotropic elastic media, the plane of circular symmetry coinciding with the bedding plane. For compressional waves, the velocity is higher for propagation in the bedding plane than at right angles to it, and the anisotropy is greater for the 5000-ft shale. For shear waves, the SH‐wave perpendicular to bedding and the SV‐wave parallel to bedding propagate with the same speed, which is about 25 percent lower than that for the SH‐wave parallel to bedding. In general, compressional and shear velocities are higher for the indurated 5000-ft shale than for the friable 3200-ft shale. All velocities increase with in‐increasing confining pressure to 4 kbar. The 3200-ft shale exhibits velocity hysteresis as a function of pressure, whereas this effect is almost nonexistent for the 5000-ft shale. Many features of the dependence of velocity on pressure can be explained by consideration of effective pressure and the degree of water saturation. For both shales, laboratory compressional wave velocities are on average 10 percent higher than log‐derived velocities. The discrepancy cannot be explained completely, but likely contributing factors are sampling bias, velocity dispersion, and formation damage in situ.
Compressional velocities have been measured as a function of confining pressure for 14 West Delta Block (Louisiana) sandstone cores. The dry velocity data for these poorly consolidated sandstones at 10 MPa confining pressure plot on a linear velocity‐density trend with well‐consolidated sandstones but not loose sands. The dry velocity data also show linear trends of decreasing velocity with increasing porosity along contours of constant clay content similar to those obtained at 40 MPa by Tosaya and Nur (1982) for saturated sandstones. The spacing between clay contours indicates that a large portion of the velocity variation with clay content is due to microporosity, which is not included in point counting, within the clays. The slope of the velocity‐porosity trends indicates that cementation increases with decreasing porosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.