Okadaic acid (OA) is a marine biotoxin that is produced by algae and accumulates in filter-feeding shellfish, through which it enters the human food chain, leading to diarrheic shellfish poisoning (DSP) after ingestion. Furthermore, additional effects of OA have been observed, such as cytotoxicity. Additionally, a strong downregulation of the expression of xenobiotic-metabolizing enzymes in the liver can be observed. The underlying mechanisms of this, however, remain to be examined. In this study, we investigated a possible underlying mechanism of the downregulation of cytochrome P450 (CYP) enzymes and the nuclear receptors pregnane X receptor (PXR) and retinoid-X-receptor alpha (RXRα) by OA through NF-κB and subsequent JAK/STAT activation in human HepaRG hepatocarcinoma cells. Our data suggest an activation of NF-κB signaling and subsequent expression and release of interleukins, which then activate JAK-dependent signaling and thus STAT3. Moreover, using the NF-κB inhibitors JSH-23 and Methysticin and the JAK inhibitors Decernotinib and Tofacitinib, we were also able to demonstrate a connection between OA-induced NF-κB and JAK signaling and the downregulation of CYP enzymes. Overall, we provide clear evidence that the effect of OA on the expression of CYP enzymes in HepaRG cells is regulated through NF-κB and subsequent JAK signaling.
Agrostemma githago L. (corn cockle) is an herbaceous plant mainly growing in Europe. The seeds of the corn cockle are toxic and poisonings were widespread in the past by consuming contaminated flour. The toxic principle of Agrostemma seeds was attributed to triterpenoid secondary metabolites. Indeed, this is in part true. However Agrostemma githago L. is also a producer of ribosome-inactivating proteins (RIPs). RIPs are N-glycosylases that inactivate the ribosomal RNA, a process leading to an irreversible inhibition of protein synthesis and subsequent cell death. A widely known RIP is ricin from Ricinus communis L., which was used as a bioweapon in the past. In this study we isolated agrostin, a 27 kDa RIP from the seeds of Agrostemma githago L., and determined its full sequence. The toxicity of native agrostin was investigated by impedance-based live cell imaging. By RNAseq we identified 7 additional RIPs (agrostins) in the transcriptome of the corn cockle. Agrostin was recombinantly expressed in E. coli and characterized by MALDI-TOF–MS and adenine releasing assay. This study provides for the first time a comprehensive analysis of ribosome-inactivating proteins in the corn cockle and complements the current knowledge about the toxic principles of the plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.