The mammalian brain contains many specialized cells that develop from a thin sheet of neuroepithelial progenitor cells. Single-cell transcriptomics revealed hundreds of molecularly diverse cell types in the nervous system, but the lineage relationships between mature cell types and progenitor cells are not well understood. Here we show in vivo barcoding of early progenitors to simultaneously profile cell phenotypes and clonal relations in the mouse brain using single-cell and spatial transcriptomics. By reconstructing thousands of clones, we discovered fate-restricted progenitor cells in the mouse hippocampal neuroepithelium and show that microglia are derived from few primitive myeloid precursors that massively expand to generate widely dispersed progeny. We combined spatial transcriptomics with clonal barcoding and disentangled migration patterns of clonally related cells in densely labeled tissue sections. Our approach enables high-throughput dense reconstruction of cell phenotypes and clonal relations at the single-cell and tissue level in individual animals and provides an integrated approach for understanding tissue architecture.
Cell types can be classified based on shared patterns of transcription. Variability in gene expression between individual cells of the same type has been ascribed to stochastic transcriptional bursting and transient cell states. We asked whether long-term, heritable differences in transcription can impart diversity within a cell type. Studying clonal human lymphocytes and mouse brain cells, we uncover a vast diversity of heritable transcriptional states among different clones of cells of the same type in vivo. In lymphocytes we show that this diversity is coupled to clone specific chromatin accessibility, resulting in distinct expression of genes by different clones. Our findings identify a source of cellular diversity, which may have important implications for how cellular populations are shaped by selective processes in development, aging and disease.
The mammalian brain contains a large number of specialized cells that develop from a thin sheet of neuroepithelial progenitor cells. Recently, high throughput single-cell technologies have been used to define the molecular diversity of hundreds of cell types in the nervous system. However, the lineage relationships between mature brain cells and progenitor cells are not well understood, because transcriptomic studies do not allow insights into clonal relationships and classical fate-mapping techniques are not scalable. Here we show in vivo barcoding of early progenitor cells that enables simultaneous profiling of cell phenotypes and clonal relations in the mouse brain using single-cell and spatial transcriptomics. We reconstructed thousands of clones to uncover the existence of fate-restricted progenitor cells in the mouse hippocampal neuroepithelium and show that microglia are derived from few primitive myeloid precursors that massively expand to generate widely dispersed progeny. By coupling spatial transcriptomics with clonal barcoding, we disentangle migration patterns of clonally related cells in densely labelled tissue sections. Compared to classical fate mapping, our approach enables high-throughput dense reconstruction of cell phenotypes and clonal relations at the single-cell and tissue level in individual animals and provides an integrated approach for understanding tissue architecture.
Hippocampal adult neural stem cells emerge from progeny of the neuroepithelial lineage during murine brain development. Hippocampus development is increasingly well understood. However, the clonal relationships between early neuroepithelial stem cells and postnatal neurogenic cells remain unclear, especially at the single-cell level.Here we report fate bias and gene expression programs in thousands of clonally related cells in the juvenile hippocampus based on single-cell RNA-seq of barcoded clones. We find evidence for early fate restriction of neuroepithelial stem cells to either neurogenic progenitor cells of the dentate gyrus region or oligodendrogenic, non-neurogenic fate supplying cells for other hippocampal regions including gray matter areas and the Cornu ammonis region 1/3. Our study provides new insights into the phenomenon of early fate restriction guiding the development of postnatal hippocampal neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.