A striking pathological feature of dystrophinopathies is the presence of morphologically abnormal branched skeletal muscle fibers. The deterioration of muscle contractile function in Duchenne muscular dystrophy is accompanied by both an increase in number and complexity of these branched fibers. We propose that when number and complexity of branched fibers reaches a critical threshold, or "tipping point," the branches in and of themselves are the site of contraction-induced rupture. In the present study, we use the dystrophic mdx mouse and littermate controls to study the prediseased dystrophic fast-twitch extensor digitorum longus (EDL) muscle at 2-3 wk, the peak myonecrotic phase at 6-9 wk, and finally, "old," at 58-112 wk. Using a combination of isolated muscle function contractile measurements coupled with single-fiber imaging and confocal microscope imaging of cleared whole muscles, we identified a distinct pathophysiology, acute fiber rupture at branch nodes, which occurs in "old" fast-twitch EDL muscle approaching the end stage of the dystrophinopathy muscle disease, where the EDL muscles are entirely composed of complexed branched fibers. This evidence supports our concept of "tipping point" where the number and extent of fiber branching reach a level where the branching itself terminally compromises muscle function, irrespective of the absence of dystrophin.
Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration. Previously, using the mdx mouse model of DMD, we have proposed that once the number and complexity of branched fibers present in dystrophic fast-twitch EDL muscle surpasses a stable level, we term "tipping point" the branches, in and of themselves, mechanically weaken the muscle by rupturing when subjected to high forces during eccentric contractions. Here we use the slow-twitch soleus muscle from the dystrophic mdx mouse to study pre-diseased "peri-ambulatory" dystrophic at 2-3 weeks, the peak regenerative "adult" phase at 6-9 weeks and "old" at 58-112 weeks. Using isolated mdx soleus muscles we examined contractile function and response to eccentric contraction correlated with amount and complexity of regenerated branched fibers. The intact muscle was enzymatically dispersed into individual fibers in order to count fiber branching and some muscles were optically cleared to allow laser scanning confocal microscopy. We demonstrate throughout the lifespan of the mdx mouse dystrophic slow-twitch soleus muscle is no more susceptible to eccentric contraction induced injury than age matched littermate controls and that this is correlated with a reduction in the number and complexity of branched fibers compared to fast-twitch dystrophic EDL muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.