Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNAMYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.
Bisphosphonate use has expanded beyond traditional applications to include treatment of a variety of low-bone-mass conditions. Complications associated with long-term bisphosphonate treatment have been noted, generating a critical need for information describing the local bisphosphonate-cell interactions responsible for these observations. This study demonstrates that a fluorescent bisphosphonate analogue, far-red fluorescent pamidronate (FRFP), is an accurate biomarker of bisphosphonate deposition and retention in vivo and can be used to monitor site-specific local drug concentration. In vitro, FRFP is competitively inhibited from the surface of homogenized rat cortical bone by traditional bisphosphonates. In vivo, FRFP delivery to the skeleton is rapid, with fluorescence linearly correlated with bone surface area. Limb fluorescence increases linearly with injected dose of FRFP; injected FRFP does not interfere with binding of standard bisphosphonates at the doses used in this study. Long-term FRFP retention studies demonstrated that FRFP fluorescence decreases in conditions of normal bone turnover, whereas fluorescence was retained in conditions of reduced bone turnover, demonstrating preservation of local FRFP concentration. In the mandible, FRFP localized to the alveolar bone and bone surrounding the periodontal ligament and molar roots, consistent with findings of osteonecrosis of the jaw. These findings support a role for FRFP as an effective in vivo marker for bisphosphonate site-specific deposition, turnover, and long-term retention in the skeleton. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.