Technology and information growth enable internet users to play a role in disseminating information, including hoax news. One way that to avoid hoax news is to look for sources of information, but valid news is not always perceived as 'true' by individuals because human judgments can lead to bias. Several studies on automatic hoax news classification have been carried out using various deep learning approaches such as the pre-trained multilingual transformer model. This study focuses on classifying Indonesian hoax news using the pre-trained transformer multilingual model (XLM-R and mBERT) combined with a BERTopic model as a topic distribution model. The result shows that the proposed method outperforms the baseline model in classifying fake news in the low-resource language (Indonesian) with accuracy, precision, recall, and F1 results of 0.9051, 0.9515, 0.8233, and 0.8828 respectively. Povzetek: Raziskava se ukvarja z identifikacijo lažnih novic v Indoneziji s pomočjo modelov XLM-R and mBERT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.