Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.
Antibiotic resistance is one of the few examples of evolution that can be addressed experimentally. The present review analyses this resistance, focusing on the networks that regulate its acquisition and its effect on bacterial physiology. It is widely accepted that antibiotics and antibiotic resistance genes play fundamental ecological roles - as weapons and shields, respectively - in shaping the structures of microbial communities. Although this Darwinian view of the role of antibiotics is still valid, recent work indicates that antibiotics and resistance mechanisms may play other ecological roles and strongly influence bacterial physiology. The expression of antibiotic resistance determinants must therefore be tightly regulated and their activity forms part of global metabolic networks. In addition, certain bacterial modes of life can trigger transient phenotypic antibiotic resistance under some circumstances. Understanding resistance thus requires the analysis of the regulatory networks controlling bacterial evolvability, the physiological webs affected and the metabolic rewiring it incurs.
Most of the bacterial species that form part of the biosphere have never been cultivated. In this situation, a comprehensive study of bacterial communities requires the utilization of non-culture-based methods, which have been named metagenomics. In this paper we review the use of different metagenomic techniques for understanding the effect of antibiotics on microbial communities, to synthesize new antimicrobial compounds and to analyse the distribution of antibiotic resistance genes in different ecosystems. These techniques include functional metagenomics, which serves to find new antibiotics or new antibiotic resistance genes, and descriptive metagenomics, which serves to analyse changes in the composition of the microbiota and to track the presence and abundance of already known antibiotic resistance genes in different ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.