-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that theglycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line-specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.
Human primary amine oxidase (hAOC3), also known as vascular adhesion protein 1, mediates leukocyte rolling and trafficking to sites of inflammation by a multistep adhesion cascade. hAOC3 is absent on the endothelium of normal tissues and is kept upregulated during inflammatory conditions, which is an applicable advantage for imaging inflammatory diseases. Sialic acid binding immunoglobulin like-lectin 9 (Siglec-9) is a leukocyte ligand for hAOC3. The peptide (CARLSLSWRGLTLCPSK) based on the region of Siglec-9 that interacts with hAOC3, can be used as a specific tracer for hAOC3-targeted imaging of inflammation using Positron Emission Tomography (PET). In the present study, we show that the Siglec-9 peptide binds to hAOC3 and triggers its amine oxidase activity towards benzylamine. Furthermore, the hAOC3 inhibitors semicarbazide and imidazole reduce the binding of wild type and Arg/Ala mutated Siglec-9 peptides to hAOC3. Molecular docking of the Siglec-9 peptide is in accordance with the experimental results and predicts that the R3 residue in the peptide interacts in the catalytic site of hAOC3 when the topaquinone cofactor is in the non-catalytic on-copper conformation. The predicted binding mode of Siglec-9 peptide to hAOC3 is supported by the PET studies using rodent, rabbit and pig AOC3 proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.