The fate of a memory is partly determined at initial encoding. However, the behavioral consequences of memory formation are often tested only once and shortly after learning, which leaves the neuronal predictors for the formation of durable memories largely unknown. Here, we hypothesized that durable memory formation (as opposed to weak or no memory formation) is reflected through increased activation in the medial temporal lobes and prefrontal cortex, and more consistent processing (i.e., stronger pattern similarity) across encoding material. Thirty-four human subjects studied unique picture-location associations while undergoing fMRI and performed a cued recall test immediately after study as well as 48 h later. Associative memories were defined as "weak" if they were retrieved during the immediate test only. Conversely, "durable" memories persisted also after 48 h. The posterior cingulate cortex showed increased pattern similarity during successful memory formation, independent of the eventual durability. For durable memory encoding, we found increased activation in medial and inferior temporal, prefrontal, and parietal regions. This was accompanied by stronger pattern similarity in lateral prefrontal and parietal regions, as well as in anterior and posterior midline structures that were also engaged during later memory retrieval. Thus, we show that pattern similarity, or consistent processing, in the posterior cingulate cortex predicts associative memory formation at encoding. If this is paralleled by additional activation increases in regions typically related to encoding, and by consistent processing in regions involved in later retrieval, formed memories appear durable for at least 48 h.
Knowledge extracted across previous experiences, or schemas, benefit encoding and retention of congruent information. However, they can also reduce specificity and augment memory for semantically related, but false information. A demonstration of the latter is given by the Deese-Roediger-McDermott (DRM) paradigm, where the studying of words that fit a common semantic schema are found to induce false memories for words that are congruent with the given schema, but were not studied. The medial prefrontal cortex (mPFC) has been ascribed the function of leveraging prior knowledge to influence encoding and retrieval, based on imaging and patient studies. Here, we used transcranial magnetic stimulation (TMS) to transiently perturb ongoing mPFC processing immediately before participants performed the DRM-task. We observed the predicted reduction in false recall of critical lures after mPFC perturbation, compared to two control groups, whereas veridical recall and recognition memory performance remained similar across groups. These data provide initial causal evidence for a role of the mPFC in biasing the assimilation of new memories and their consolidation as a function of prior knowledge.
Rational At all times humans have made attempts to improve their cognitive abilities by different means, among others, with the use of stimulants. Widely available stimulants such as caffeine, but also prescription substances such as methylphenidate and modafinil, are being used by healthy individuals to enhance cognitive performance. Objectives There is a lack of knowledge on the effects of prescription stimulants when taken by healthy individuals (as compared with patients) and especially on the effects of different substances across different cognitive domains. Methods We conducted a pilot study with three arms in which male participants received placebo and one of three stimulants (caffeine, methylphenidate, modafinil) and assessed cognitive performance with a test battery that captures various cognitive domains. Results Our study showed some moderate effects of the three stimulants tested. Methylphenidate had positive effects on self-reported fatigue as well as on declarative memory 24 hours after learning; caffeine had a positive effect on sustained attention; there was no significant effect of modafinil in any of the instruments of our test battery. All stimulants were well tolerated, and no trade-off negative effects on other cognitive domains were found. Conclusions The few observed significant positive effects of the tested stimulants were domain-specific and of rather low magnitude. The results can inform the use of stimulants for cognitive enhancement purposes as well as direct further research to investigate the effects of stimulants on specific cognitive domains that seem most promising, possibly by using tasks that are more demanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.