Teaching nonhuman primates the complex cognitive behavioral tasks that are central to cognitive neuroscience research is an essential and challenging endeavor. It is crucial for the scientific success that the animals learn to interpret the often complex task rules and reliably and enduringly act accordingly. To achieve consistent behavior and comparable learning histories across animals, it is desirable to standardize training protocols. Automatizing the training can significantly reduce the time invested by the person training the animal. In addition, self-paced training schedules with individualized learning speeds based on automatic updating of task conditions could enhance the animals' motivation and welfare. We developed a training paradigm for across-task unsupervised training (AUT) of successively more complex cognitive tasks to be administered through a stand-alone housing-based system optimized for rhesus monkeys in neuroscience research settings (Calapai A, Berger M, Niessing M, Heisig K, Brockhausen R, Treue S, Gail A. Behav Res Methods 5: 1-11, 2016). The AUT revealed interindividual differences in long-term learning progress between animals, helping to characterize learning personalities, and commonalities, helping to identify easier and more difficult learning steps in the training protocol. Our results demonstrate that 1) rhesus monkeys stay engaged with the AUT over months despite access to water and food outside the experimental sessions but with lower numbers of interaction compared with conventional fluid-controlled training; 2) with unsupervised training across sessions and task levels, rhesus monkeys can learn tasks of sufficient complexity for state-of-the-art cognitive neuroscience in their housing environment; and 3) AUT learning progress is primarily determined by the number of interactions with the system rather than the mere exposure time. NEW & NOTEWORTHY We demonstrate that highly structured training of behavioral tasks, as used in neuroscience research, can be achieved in an unsupervised fashion over many sessions and task difficulties in a monkey housing environment. Employing a predefined training strategy allows for an observer-independent comparison of learning between animals and of training approaches. We believe that self-paced standardized training can be utilized for pretraining and animal selection and can contribute to animal welfare in a neuroscience research environment.
Non-human primates participating in neurophysiological research are exposed to potentially stressful experimental procedures, such as dietary control protocols, surgical implants and their maintenance, or social separation during training and experimental session. Here, we investigated the effect of controlled access to fluid, surgical implants, implant-related cleaning of skin margins, and behavioral training sessions on salivary cortisol levels of adult male rhesus macaques participating in neurophysiological research. The animals were trained to chew flavored cotton swabs to non-invasively collect saliva samples. Our data show no differences in cortisol levels between animals with and without implants, but both, controlled access to fluid and cleaning of implants individually increased salivary cortisol concentrations, while both together did not further increase the concentration. Specifically, before cleaning, individuals with controlled access to fluid had 55% higher cortisol concentrations than individuals with free access to fluid. Under free access to fluid, cortisol concentrations were 27% higher after cleaning while no effect of cleaning was found for individuals under controlled fluid access. Training sessions under controlled access to fluid also did not affect salivary cortisol concentrations. The observed changes in cortisol concentrations represent mild stress responses, as they are only a fraction of the range of the regular circadian changes in cortisol levels in rhesus monkeys. They also indicate that combinations of procedures do not necessarily lead to cumulative stress responses. Our results indicate that salivary cortisol levels of rhesus monkeys respond to neurophysiological experimental procedures and, hence, may be used to assess further refinements of such experimental methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.