The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.
The Arabidopsis Information Resource (TAIR) is a continuously updated, online database of genetic and molecular biology data for the model plant Arabidopsis thaliana that provides a global research community with centralized access to data for over 30,000 Arabidopsis genes. TAIR’s biocurators systematically extract, organize, and interconnect experimental data from the literature along with computational predictions, community submissions, and high throughput datasets to present a high quality and comprehensive picture of Arabidopsis gene function. TAIR provides tools for data visualization and analysis, and enables ordering of seed and DNA stocks, protein chips and other experimental resources. TAIR actively engages with its users who contribute expertise and data that augments the work of the curatorial staff. TAIR’s focus in an extensive and evolving ecosystem of online resources for plant biology is on the critically important role of extracting experimentally-based research findings from the literature and making that information computationally accessible. In response to the loss of government grant funding, the TAIR team founded a nonprofit entity, Phoenix Bioinformatics, with the aim of developing sustainable funding models for biological databases, using TAIR as a test case. Phoenix has successfully transitioned TAIR to subscription-based funding while still keeping its data relatively open and accessible.
Arabidopsis thaliana is the most widely-studied plant today. The concerted efforts of over 11 000 researchers and 4000 organizations around the world are generating a rich diversity and quantity of information and materials. This information is made available through a comprehensive on-line resource called the Arabidopsis Information Resource (TAIR) (http://arabidopsis.org), which is accessible via commonly used web browsers and can be searched and downloaded in a number of ways. In the last two years, efforts have been focused on increasing data content and diversity, functionally annotating genes and gene products with controlled vocabularies, and improving data retrieval, analysis and visualization tools. New information include sequence polymorphisms including alleles, germplasms and phenotypes, Gene Ontology annotations, gene families, protein information, metabolic pathways, gene expression data from microarray experiments and seed and DNA stocks. New data visualization and analysis tools include SeqViewer, which interactively displays the genome from the whole chromosome down to 10 kb of nucleotide sequence and AraCyc, a metabolic pathway database and map tool that allows overlaying expression data onto the pathway diagrams. Finally, we have recently incorporated seed and DNA stock information from the Arabidopsis Biological Resource Center (ABRC) and implemented a shopping-cart style on-line ordering system.
Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).
Controlled vocabularies are increasingly used by databases to describe genes and gene products because they facilitate identification of similar genes within an organism or among different organisms. One of The Arabidopsis Information Resource's goals is to associate all Arabidopsis genes with terms developed by the Gene Ontology Consortium that describe the molecular function, biological process, and subcellular location of a gene product. We have also developed terms describing Arabidopsis anatomy and developmental stages and use these to annotate published gene expression data. As of March 2004, we used computational and manual annotation methods to make 85,666 annotations representing 26,624 unique loci. We focus on associating genes to controlled vocabulary terms based on experimental data from the literature and use The Arabidopsis Information Resource-developed PubSearch software to facilitate this process. Each annotation is tagged with a combination of evidence codes, evidence descriptions, and references that provide a robust means to assess data quality. Annotation of all Arabidopsis genes will allow quantitative comparisons between sets of genes derived from sources such as microarray experiments. The Arabidopsis annotation data will also facilitate annotation of newly sequenced plant genomes by using sequence similarity to transfer annotations to homologous genes. In addition, complete and up-to-date annotations will make unknown genes easy to identify and target for experimentation. Here, we describe the process of Arabidopsis functional annotation using a variety of data sources and illustrate several ways in which this information can be accessed and used to infer knowledge about Arabidopsis and other plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.